针对化工生产过程中高维数据故障特征难以学习和提取的缺点,提出一种基于二维卷积神经网络的化工过程故障检测方法.首先,采集化工过程不同故障的数据构成训练集和测试集;然后,对训练集和测试集中对应的正常样本和故障样本标注标签;最后,将训练集中的样本数据作为卷积神经网络的输入来训练、优化模型.方法应用于田纳西-伊斯曼化工过程,数据结果表明:二维卷积神经网络能够提取出原始数据中样本与样本、变量与变量之间更为抽象的高层数据特征,通过特征提取和学习后的重构特征数据输入到全连接层BP神经网络进行故障分类,比单独使用全连接BP神经网络的检测率提高了14.42 %,误报率降低了2.55 %.
卷积神经网络
TP277
国家自然科学基金重大项目(61490701); 国家自然科学基金项目(61673279); 辽宁省科学事业公益研究基金(2016001006)
加权局部近邻标准化PCA的工业过程故障检测
Cited