加权局部近邻标准化PCA的工业过程故障检测
Fault Detection of Industrial Process Based on Weighed Local Neighborhood Standardization PCA
针对工业生产过程的多模态、方差差异明显和非高斯特性,提出一种加权局部近邻标准化PCA(WLNSPCA)的故障检测方法.通过计算每个样本的k近邻样本的加权均值和标准差对原始数据集进行标准化,消除数据的多模态、方差差异和非高斯特性.对加权局部近邻标准化后的数据建立PCA模型,利用SPE和T2统计量进行过程监视.对新来测试样本进行加权局部近邻标准化,再向PCA模型上投影,计算相应统计量.将该方法应用于数值例子和半导体过程,仿真实验结果表明:与PCA、核主成分分析(KPCA)和加权近邻标准化PCA(WNSPCA)相比,加权局部近邻标准化PCA(WLNSPCA)具有一定的优越性.
工业过程
TP277
国家自然科学基金重大项目(61490701); 国家自然科学基金项目(61673279); 辽宁省科学事业公益研究基金(2016001006)
加权局部近邻标准化PCA的工业过程故障检测 [J]. 沈阳化工大学学报, 2021, 35(3): 265-274.
基于EWMA-kNN的多工况过程微小故障检测
Cited