支持向量机,核参数,局部概率密度,多模态过程,故障检测," /> 支持向量机,核参数,局部概率密度,多模态过程,故障检测,"/> support ,vector machine,kernel parameters,local probability density,multi-modal process,fault detection,"/> <p class="MsoPlainText"> <span>基于多模型</span><span>SVM的多模态过程故障检测</span>
Please wait a minute...
沈阳化工大学学报, 2023, 37(6): 533-541    doi: 10.3969/j.issn.2095-2198.2023.06.009
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

基于多模型SVM的多模态过程故障检测

沈阳化工大学 信息工程学院, 辽宁 沈阳 110142

Fault Detection of Multi-Modal Process Based on Multi-Model SVM

下载:  PDF (1311KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为了有效改进支持向量机(SVM)在工业过程中的故障检测性能,提出一种基于多模型SVMmulti-model SVMMM-SVM)的多模态过程故障检测方法.首先,运用局部概率密度方法对多模态数据进行预处理,消除多模态数据对故障检测性能的影响;其次,通过改变SVM的核参数建立多个SVM模型进行故障分类;最后,将多个SVM模型的分类结果进行整合,通过概率大小定义数据类别,实现对故障的有效检测.将该方法应用于多模态数值例子和田纳西-伊斯曼多模态过程,并与PCAKPCASVM方法作比较,实验结果进一步验证了该方法的有效性.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  支持向量机')" href="#">

支持向量机  核参数  局部概率密度  多模态过程  故障检测    

Abstract: 

To effectively improve the fault detection performance of support vector machine(SVM)in industrial processes,a fault detection method of multi-modal process based on multi-model SVM(MM-SVM)was proposed.Firstly,the local probability density method was applied to preprocess the multi-modal data to eliminate the influence of the multi-modal data on fault detection performance.Then,multiple SVM models for fault classification were established by changing the kernel parameters of SVM.Finally,the classification results of multiple SVM models were integrated,and the data category was defined by the probability to achieve effective fault detection.The proposed method was applied to a multi-modal numerical example and the Tennessee-Eastman multi-modal process.Compared with PCA,KPCA and SVM,the experimental results further verify the effectiveness of the proposed method.

Key words:  support ')" href="#">

support     vector machine    kernel parameters    local probability density    multi-modal process    fault detection

               出版日期:  2024-12-31      发布日期:  2024-09-23      整期出版日期:  2024-12-31
ZTFLH: 

TP277

 
基金资助: 

国家自然科学基金项目(62273242); 辽宁省教育厅项目(JYTMS20231516)

通讯作者:  李元   
作者简介:  郭金玉(1975—),女,山东高唐人,副教授,博士,主要从事工业过程的故障检测与诊断、生物特征识别算法和应用研究.
引用本文:    
郭金玉, 李涛, 李元.

基于多模型SVM的多模态过程故障检测 [J]. 沈阳化工大学学报, 2023, 37(6): 533-541.
GUO Jinyu, LI Tao, LI Yuan.

Fault Detection of Multi-Modal Process Based on Multi-Model SVM . Journal of Shenyang University of Chemical Technology, 2023, 37(6): 533-541.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2023.06.009  或          https://xuebao.syuct.edu.cn/CN/Y2023/V37/I6/533

1]周东华,李钢,李元.数据驱动的工业过程故障检测与诊断技术[M].北京:科学出版社,2011:1-76.

2]郭金玉,陈海彬,李元.基于在线升级主样本建模的批次过程kNN故障检测方法[J].信息与控制,2014,43(4):495-500.

3]HAMADACHE M,LEE D.Principal Component Analysis Based Signal-to-Noise Ratio Improvement for Inchoate Faulty Signals:Application to Ball Bearing Fault Detection [J].International Journal of Control,Automation and Systems,2017,15(2):506-517.

4]郭小萍,李克勤,李元.基于近邻距离加权主元分析的故障定位[J].沈阳化工大学学报,2018,32(3):264-272.

5]YU J,QIN S J.Multimode Process Monitoring with Bayesian Inference-Based Finite Gaussian Mixture Models[J].AIChE Journal,2008,54(7):1811-1829.

6]ZHAO C H,YAO Y,GAO F R,et al.Statistical Analysis and Online Monitoring for Multimode Processes with Between-Mode Transitions [J].Chemical Engineering Science,2010,65(22):5961-5975.

7]王亚君,周岐.基于多动态核PCA的统计过程监测策略研究[J].辽宁工业大学学报(自然科学版),2012,32(5):295-298.

8]许洁,胡寿松,申忠宇.基于改进多尺度核主元分析的化工过程故障检测与诊断方法研究[J].仪器仪表学报,2010,31(1):51-55.

9]ZHAO S J,ZHANG J,XU Y M.Performance Monitoring of Process with Multiple Operation Modes through Multiple PLS Models [J].Journal of Process Control,2006,16(7):763-772.

10]YU J.A Nonlinear Kernel Gaussian Mixture Model Based Inferential Monitoring Approach for Fault Detection and Diagnosis of Chemical Processes [J].Chemical Engineering Science,2012,68(1):506-519.

11]VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,2000:267-290.

12]HSU C W,LIN C J.A Comparison of Methods for Multiclass Support Vector Machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.

13]DRUCKER H,BURGES C J C,KAUFMAN L,et al.Support Vector Regression Machines[J].Advances in Neural Information Processing Systems,1997,28(7):779-784.

14]SHEN L X,WANG H,XU L D,et al.Identity Management Based on PCA and SVM[J].Information Systems Frontiers,2016,18(4):711-716.

15]FAN R E,CHANG K W,HSIEH C J,et al.LIBLINEAR:a Library for Large Linear Classification[J].Journal of Machine Learning Research,2008,9:1871-1874.

16]ZHANG Y W.Enhanced Statistical Analysis of Nonlinear Processes Using KPCA,KICA and SVM[J].Chemical Engineering Science,2009,64(5):801-811.

17]YU J.A Support Vector Clustering-Based Probabilistic Method for Unsupervised Fault Detection and Classification of Complex Chemical Processes Using Unlabeled Data[J].AIChE Journal,2013,59(2):407-419.

18]LEE J,LEE D.An Improved Cluster Labeling Method for Support Vector Clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):461-464.

19]HSU C C,CHEN M C,CHEN L S.Integrating Independent Component Analysis and Support Vector Machine for Multivariate Process Monitoring[J].Computers & Industrial Engineering,2010,59(1):145-156.

20]郭金玉,刘玉超,李元.一种基于改进局部熵PCA的工业过程故障检测方法[J].高校化学工程学报,2019,33(4):922-932.

21]GUO J Y,WANG X,LI Y.Fault Detection Based on Improved Local Entropy Locality Preserving Projections in Multimodal Processes[J].Journal of Chemometrics,2019,33(5):e3116.

22]GE Z Q,SONG Z H.Multimode Process Monitoring Based in Bayesian Method[J].Journal of Chemometrics,2009,23(12):636-650.

23]DOWNS J J,VOGEL E F.A Plant-Wide Industrial Process Control Problem[J].Computers & Chemical Engineering,1993,17(3):245-255.

24]MCAVOY T J,YE N.Base Control for the Tennessee Eastman Problem[J].Computers & Chemical Engineering,1994,18(5):383-413.

25]LEE G,HAN C H,YOON E S.Multiple-Fault Diagnosis of the Tennessee Eastman Process Based on System Decomposition and Dynamic PLS[J].Industrial & Engineering Chemistry Research,2004,43(25):8037-8048.

26]YIN S,DING S X,HAGHANI A,et al.A Comparison Study of Basic Data-Driven Fault Diagnosis and Process Monitoring Methods on the Benchmark Tennessee Eastman Process [J].Journal of Process Control,2012,22(9):1567-1581.

[1] 郭小萍, 赵英平, 李元.

基于子块典型变量分析的化工过程故障检测 [J]. 沈阳化工大学学报, 2024, 38(1): 61-70.

[2] 李元1, 刘雨田1, 冯立伟1, 2.

基于时空近邻标准化和PCA的故障检测方法 [J]. 沈阳化工大学学报, 2024, 38(1): 52-60.

[3] 张成1, 赵丽颖2, 杨东昇2, 李元2.

基于LPP特征空间重构的故障检测策略

Fault Detection Strategy Based on the Feature Space Reconstruction of LPP [J]. 沈阳化工大学学报, 2023, 37(5): 472-471.

[4] 郭小萍, 徐月, 李元.

基于EWMA-kNN的多工况过程微小故障检测 [J]. 沈阳化工大学学报, 2021, 35(4): 358-365.

[5] 郭金玉, 刘玉超, 李元.

加权局部近邻标准化PCA的工业过程故障检测 [J]. 沈阳化工大学学报, 2021, 35(3): 265-274.

[6] 李元, 杨东昇, 李大舟. 基于二维卷积神经网络高层数据特征学习的过程故障检测[J]. 沈阳化工大学学报, 2021, 35(3): 256-264.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed