[1]周东华,李钢,李元.数据驱动的工业过程故障检测与诊断技术[M].北京:科学出版社,2011:1-76.
[2]郭金玉,陈海彬,李元.基于在线升级主样本建模的批次过程kNN故障检测方法[J].信息与控制,2014,43(4):495-500.
[3]HAMADACHE M,LEE D.Principal Component Analysis Based Signal-to-Noise Ratio Improvement for Inchoate Faulty Signals:Application to Ball Bearing Fault Detection [J].International Journal of Control,Automation and Systems,2017,15(2):506-517.
[4]郭小萍,李克勤,李元.基于近邻距离加权主元分析的故障定位[J].沈阳化工大学学报,2018,32(3):264-272.
[5]YU J,QIN S J.Multimode Process Monitoring with Bayesian Inference-Based Finite Gaussian Mixture Models[J].AIChE Journal,2008,54(7):1811-1829.
[6]ZHAO C H,YAO Y,GAO F R,et al.Statistical Analysis and Online Monitoring for Multimode Processes with Between-Mode Transitions [J].Chemical Engineering Science,2010,65(22):5961-5975.
[7]王亚君,周岐.基于多动态核PCA的统计过程监测策略研究[J].辽宁工业大学学报(自然科学版),2012,32(5):295-298.
[8]许洁,胡寿松,申忠宇.基于改进多尺度核主元分析的化工过程故障检测与诊断方法研究[J].仪器仪表学报,2010,31(1):51-55.
[9]ZHAO S J,ZHANG J,XU Y M.Performance Monitoring of Process with Multiple Operation Modes through Multiple PLS Models [J].Journal of Process Control,2006,16(7):763-772.
[10]YU J.A Nonlinear Kernel Gaussian Mixture Model Based Inferential Monitoring Approach for Fault Detection and Diagnosis of Chemical Processes [J].Chemical Engineering Science,2012,68(1):506-519.
[11]VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,2000:267-290.
[12]HSU C W,LIN C J.A Comparison of Methods for Multiclass Support Vector Machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
[13]DRUCKER H,BURGES C J C,KAUFMAN L,et al.Support Vector Regression Machines[J].Advances in Neural Information Processing Systems,1997,28(7):779-784.
[14]SHEN L X,WANG H,XU L D,et al.Identity Management Based on PCA and SVM[J].Information Systems Frontiers,2016,18(4):711-716.
[15]FAN R E,CHANG K W,HSIEH C J,et al.LIBLINEAR:a Library for Large Linear Classification[J].Journal of Machine Learning Research,2008,9:1871-1874.
[16]ZHANG Y W.Enhanced Statistical Analysis of Nonlinear Processes Using KPCA,KICA and SVM[J].Chemical Engineering Science,2009,64(5):801-811.
[17]YU J.A Support Vector Clustering-Based Probabilistic Method for Unsupervised Fault Detection and Classification of Complex Chemical Processes Using Unlabeled Data[J].AIChE Journal,2013,59(2):407-419.
[18]LEE J,LEE D.An Improved Cluster Labeling Method for Support Vector Clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):461-464.
[19]HSU C C,CHEN M C,CHEN L S.Integrating Independent Component Analysis and Support Vector Machine for Multivariate Process Monitoring[J].Computers & Industrial Engineering,2010,59(1):145-156.
[20]郭金玉,刘玉超,李元.一种基于改进局部熵PCA的工业过程故障检测方法[J].高校化学工程学报,2019,33(4):922-932.
[21]GUO J Y,WANG X,LI Y.Fault Detection Based on Improved Local Entropy Locality Preserving Projections in Multimodal Processes[J].Journal of Chemometrics,2019,33(5):e3116.
[22]GE Z Q,SONG Z H.Multimode Process Monitoring Based in Bayesian Method[J].Journal of Chemometrics,2009,23(12):636-650.
[23]DOWNS J J,VOGEL E F.A Plant-Wide Industrial Process Control Problem[J].Computers & Chemical Engineering,1993,17(3):245-255.
[24]MCAVOY T J,YE N.Base Control for the Tennessee Eastman Problem[J].Computers & Chemical Engineering,1994,18(5):383-413.
[25]LEE G,HAN C H,YOON E S.Multiple-Fault Diagnosis of the Tennessee Eastman Process Based on System Decomposition and Dynamic PLS[J].Industrial & Engineering Chemistry Research,2004,43(25):8037-8048.
[26]YIN S,DING S X,HAGHANI A,et al.A Comparison Study of Basic Data-Driven Fault Diagnosis and Process Monitoring Methods on the Benchmark Tennessee Eastman Process [J].Journal of Process Control,2012,22(9):1567-1581.
|