子块,典型变量分析,故障检测,TE过程," />

子块,典型变量分析,故障检测,TE过程,"/> <p class="MsoNormal"> 基于子块典型变量分析的化工过程故障检测

Please wait a minute...
沈阳化工大学学报, 2024, 38(1): 61-70    doi: 10.3969/j.issn.2095-2198.2024.01.009
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

基于子块典型变量分析的化工过程故障检测

(沈阳化工大学 信息工程学院, 辽宁 沈阳 110142)

Fault Detection in Chemical Process Based on Sub-Block Canonical Variate Analysis

下载:  PDF (4313KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

大型化工生产过程包含许多单元,单元内变量之间具有非常强的相关性,针对这一特点,提出一种基于子块典型变量分析(sub-block canonical variate analysis,SB-CVA)的故障检测方法.依据块内变量高度相关、块间变量相关性较小原则将过程建模数据分块,在各个块内分别建立CVA模型,计算T2SPE统计量作为故障检测指标.该方法主要优点是能及时检测故障并定位故障发生的单元.TE过程进行仿真,并与PLSMB-PLSCVA方法进行对比,结果验证了该方法的有效性.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词: 

子块')" href="#">

子块  典型变量分析  故障检测  TE过程    

Abstract: 

The large-scale chemical production process contains many units,and the variables within the units have a very strong correlation.In view of this characteristic,a fault detection method based on sub-block canonical variate analysis(SB-CVA) was proposed.Firstly,the process modeling data were divided into several sub-blocks according to the principle of high correlation of intra-block variables and low correlation of inter-block variables.Then CVA models were established within each block,T2 and SPE statistics were calculated as fault detection indicators.The proposed method could detect the fault of sub-blocks in time and confirm the fault unit effectively.Simulation was carried out through TE process and compared with PLS,MB-PLS and CVA to verify the effectiveness of the proposed method.

Key words:  sub-block    canonical variate analysis    fault detection    TE process
               出版日期:  2024-02-29      发布日期:  2024-09-24      整期出版日期:  2024-02-29
ZTFLH: 

TP277

 
基金资助: 

国家自然科学基金资助项目(61490701,61673279);辽宁省教育厅重点实验室项目(LZ2015059)

通讯作者:  李元   
作者简介:  郭小萍(1972—),女,山西大同人,教授,博士,主要从事基于数据驱动的复杂过程故障诊断的研究.
引用本文:    
郭小萍, 赵英平, 李元.

基于子块典型变量分析的化工过程故障检测 [J]. 沈阳化工大学学报, 2024, 38(1): 61-70.
GUO Xiaoping, ZHAO Yingping, LI Yuan.

Fault Detection in Chemical Process Based on Sub-Block Canonical Variate Analysis . Journal of Shenyang University of Chemical Technology, 2024, 38(1): 61-70.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2024.01.009  或          https://xuebao.syuct.edu.cn/CN/Y2024/V38/I1/61

1]徐圆,刘辛新,朱群雄.化工过程可拓PCA故障诊断方法研究与应用[J].计算机与应用化学,2013,30(11):1324-1328.

2]郭小萍,李克勤,李元.基于近邻距离加权主元分析的故障定位[J].沈阳化工大学学报,2018,32(3):264-272.

3]周东华,史建涛,何潇.动态系统间歇故障诊断技术综述[J].自动化学报,2014,40(2):161-171.

4]ZHANG W,JIA M P,ZHU L,et al.Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis[J].Chinese Journal of Mechanical Engineering,2017,30(4):782-795.

5]李元,黄莹莹.基于差分动态主元分析的多模态过程故障检测[J].沈阳化工大学学报,2019,33(4):339-348.

6]WANG J,ZHONG B,ZHOU J L.Quality-Relevant Fault Monitoring Based on Locality-Preserving Partial Least-Squares Statistical Models[J].Industrial & Engineering Chemistry Research,2017,56(24):7009-7020.

7]LEE C,CHOI S W,LEE I B.Variable Reconstruction and Sensor Fault Identification Using Canonical Variate Analysis[J].Journal of Process Control,2006,16(7):747-761.

[8]JIANG Q C,YANG X F.Multimode Process Monitoring Using Variational Bayesian Inference and Canonical Correlation Analysis[J].IEEE Transactions on Automation Science and Engineering,2019,16(4):1814-1824.

9]SIMOGLOU A,MARTIN E B,MORRIS A J.Statistical Performance Monitoring of Dynamic Multivariate Processes Using State Space Modelling[J].Computers & Chemical Engineering,2002,26(6):909-920.

10]WEN Q J,GE Z Q,SONG Z H.Multimode Dynamic Process Monitoring Based on Mixture Canonical Variate Analysis Model[J].Industrial and Engineering Chemistry Research,2015,54(5):1605-1614.

11]LI X C,YANG Y J,BENNETT I,et al.Condition Monitoring of Rotating Machines Under Time-Varying Conditions Based on Adaptive Canonical Variate Analysis[J].Mechanical Systems and Signal Processing,2019,131:348-363.

12]LAN T,TONG C D,SHI X H,et al.Dynamic Statistical Process Monitoring Based on Generalized Canonical Variate Analysis[J].Journal of the Taiwan Institute of Chemical Engineers,2020,112:78-86.

13]LIU Q,ZHU Q Q,QIN S J,et al.Dynamic Concurrent Kernel CCA for Strip-Thickness Relevant Fault Diagnosis of Continuous Annealing Processes[J].Journal of Process Control,2018,67:12-22.

14]JIANG B B,HUANG D X,ZHU X X,et al.Canonical Variate Analysis-Based Contributions for Fault Identification[J].Journal of Process Control,2015,26:17-25.

15]季正燕,陈辉,张佳佳,等.一种基于奇异值分解的解相干算法[J].电子与信息学报,2017,39(8):1913-1918.

16]PREETHI R A,ANANDHARAJ G.Quantized Ternary Pattern and Singular Value Decomposition for the Efficient Mining of Sequences in SRSI Images[J].SN Applied Sciences,2020,2(10):1697.

17]商亮亮,刘建昌,谭树彬,等.基于递推规范变量分析的时变过程故障检测[J].东北大学学报(自然科学版),2016,37(12):1673-1676,1682.

18SAMUEL R T,CAO Y.Kernel Canonical Variate Analysis for Nonlinear Dynamic Process MonitoringJ.IFAC-Papersonline,2015,48(8):605-610.

[1] 李元1, 刘雨田1, 冯立伟1, 2.

基于时空近邻标准化和PCA的故障检测方法 [J]. 沈阳化工大学学报, 2024, 38(1): 52-60.

[2] 郭金玉, 李涛, 李元.

基于多模型SVM的多模态过程故障检测 [J]. 沈阳化工大学学报, 2023, 37(6): 533-541.

[3] 张成1, 赵丽颖2, 杨东昇2, 李元2.

基于LPP特征空间重构的故障检测策略

Fault Detection Strategy Based on the Feature Space Reconstruction of LPP [J]. 沈阳化工大学学报, 2023, 37(5): 472-471.

[4] 郭小萍, 徐月, 李元.

基于EWMA-kNN的多工况过程微小故障检测 [J]. 沈阳化工大学学报, 2021, 35(4): 358-365.

[5] 郭金玉, 刘玉超, 李元.

加权局部近邻标准化PCA的工业过程故障检测 [J]. 沈阳化工大学学报, 2021, 35(3): 265-274.

[6] 李元, 杨东昇, 李大舟. 基于二维卷积神经网络高层数据特征学习的过程故障检测[J]. 沈阳化工大学学报, 2021, 35(3): 256-264.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed