窄卷积层,神经网络,轴承,加权平均法,剩余寿命预测," /> 窄卷积层,神经网络,轴承,加权平均法,剩余寿命预测,"/> narrow convolutional layer,neural network,bearing,weighted average method,remaining life prediction,"/> <p class="MsoNormal"> 基于窄卷积层神经网络轴承剩余使用寿命预测
Please wait a minute...
沈阳化工大学学报, 2023, 37(2): 151-158    doi: 10.3969/j.issn.2095-2198.2023.02.009
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

基于窄卷积层神经网络轴承剩余使用寿命预测

(1. 沈阳化工大学 化学工程学院,辽宁 沈阳 110142;

(2. 沈阳化工大学 装备可靠性研究所, 辽宁 沈阳 110142

沈阳化工大学 信息工程学院, 辽宁 沈阳 110142

Prediction of Remaining Service Life of Bearings Based on Narrow Convolutional Layer Neural Network

下载:  PDF (1439KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

传统的轴承剩余使用寿命预测方法大多是对原始振动信号进行时域特征、频域特征以及时频域特征的提取,创建轴承的健康指标来建立模型,实现剩余寿命预测.为了简化轴承剩余寿命预测方法及提高预测的准确度,提出一种只保留传统卷积神经网络里的卷积层,且把卷积层改为窄卷积的降维方法.首先,将窄卷积层神经网络对原始输入信号进行特征学习,构建健康指标;其次,采用Adam优化损失函数及加权平均方法对网络输出结果进行降噪处理,得到健康指标,进而根据健康指标反向计算且平滑后得到剩余使用寿命;最后,通过滚动轴承全寿命试验数据仿真证明该方法能够准确预测轴承剩余使用寿命,且与传统卷积神经网络的预测结果进行对比,该方法的寿命百分比误差均值为7.33%,传统卷积神经网络的寿命百分比误差均值为61.65%,该方法的平均误差降低了88.11%,验证了其有效性.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  窄卷积层')" href="#">

窄卷积层  神经网络  轴承  加权平均法  剩余寿命预测    

Abstract: 

The traditional bearing remaining service life prediction methods mostly extract the original vibration signals in time domain,frequency domain,and time-frequency domain characteristics,and create bearing health indicators to establish a model to achieve remaining life prediction.In order to simplify the prediction method of bearing remaining life and improve the accuracy of prediction,this paper proposes a dimensionality reduction method that only retains the convolutional layer in the traditional convolutional neural network and changes the convolutional layer to narrow convolution.Firstly,the proposed narrow convolutional layer neural network performs feature learning on the original input signal to construct health indicators.Secondly,Adam optimization loss function and weighted average method are used to denoise the network output results to obtain health indicators,and then according to the health indicators the remaining service life is obtained after reverse calculation and smoothing.Finally,the simulation of the full life test data of rolling bearings shows that this method can accurately predict the remaining service life of the bearing,and compared with the prediction results of traditional convolutional neural networks,the average life percentage error of this method is 7.33%,while the average lifetime percentage error of the traditional convolutional neural network is 61.65%.The average error of this method has been reduced by 88.11%,which verifies its effectiveness.

Key words:  narrow convolutional layer')" href="#">

narrow convolutional layer    neural network    bearing    weighted average method    remaining life prediction

               出版日期:  2023-04-29      发布日期:  2024-06-06      整期出版日期:  2023-04-29
ZTFLH: 

TH165

 
基金资助: 

辽宁省自然科学基金项目(20170540725);辽宁省高端人才建设项目—辽宁省特聘教授

引用本文:    
高淑芝, 褚智伟.

基于窄卷积层神经网络轴承剩余使用寿命预测 [J]. 沈阳化工大学学报, 2023, 37(2): 151-158.
GAO Shuzhi, CHU Zhiwei.

Prediction of Remaining Service Life of Bearings Based on Narrow Convolutional Layer Neural Network . Journal of Shenyang University of Chemical Technology, 2023, 37(2): 151-158.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2023.02.009  或          https://xuebao.syuct.edu.cn/CN/Y2023/V37/I2/151

1RAI A,UPADHYAY S H.The Use of MD-CUMSUM and NARX Neural Network for Anticipating the Remaining Useful Life of Bearings J.Measurement,2017,111:397-410.

2LIU Y,ZUO M J,LI Y Fet al.Dynamic Reliability Assessment for Multi-State Systems Utilizing System-Level Inspection  DataJ.IEEE Transactions on Reliability,2015,64(4):1287-1299.

3DI MAIO FTSUI K LZIO E.Combining Relevance Vector Machines and Exponential Regression for Bearing Residual Life EstimationJ.Mechanical Systems and Signal Processing,2012,31:405-427.

4RAI A,UPADHYAY S H.Intelligent Bearing Performance Degradation Assessment and Remaining Useful Life Prediction Based on Self-Organising Map and Support Vector RegressionJ.Proceedings of the Institution of Mechanical EngineersPart CJournal of Mechanical Engineering Science,2018,232(6):1118-1132. .

5BABU G S,ZHAO P L,LI X L.Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful LifeC//Database Systems for Advanced ApplicationsChamSpringer,2016:214-228.

6MAO W T,HE J L,TANG J Met al.Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Long Short-Term Memory Neural NetworkJ. Advances in Mechanical Engineering,2018,10(12):1-18.

7REN L,SUN Y Q,WANG Het al.Prediction of Bearing Remaining Useful Life with Deep Convolution Neural NetworkJ.IEEE Access,2018,6:13041-13049.

8DEUTSCH JHE MHE D.Remaining Useful Life Prediction of Hybrid Ceramic Bearings Using an Integrated Deep Learning and Particle Filter ApproachJ.Applied Sciences,2017,7(7):649.

9WANG F T,LIU X F,DENG Get al.Remaining Life Prediction Method for Rolling Bearing Based on the Long Short-Term Memory NetworkJ.Neural Processing Letters,2019,50(3):2437-2454.

10CHENG C,MA G J,ZHANG Yet al.Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural NetworksEB/OL.2018-12-08)[2020-08-19.https://arxiv.org/abs/1812.03315v1

11REN L,SUN Y Q,CUI Jet al.Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural NetworksJ.Journal of Manufacturing Systems,2018,48(Part C):71-77.

12ZHU JCHEN NPENG W WEstimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural NetworkJ.IEEE Transactions on Industrial Electronics,2019,66(4):3208-3216.

13]金志浩,迟展,于宝刚.基于声发射技术的减速顶故障诊断[J.沈阳化工大学学报,2020,34(2):147-152.

14GUO LLEI Y GLI N Pet alDeep Convolution Feature Learning for Health Indicator Construction of BearingsC//2017 Prognostics and System Health Management ConferencePHM-Harbin).HarbinIEEE2017:1-6.

15GOODFELLOW I,BENGIO Y,COURVILLE A .Deep LearningM.Cambridgethe MIT Press,2016:326-366.

16LECUN Y,BENGIO Y,HINTON GDeep LearningJ.Nature,2015,521(7553):436-444.

17KINGMA D,BA J.Adam:A Method for Stochastic OptimizationEB/OL.2014-12-22)[2020-08-20.https://arxiv.org/abs/1412.6980v1

18]张继冬,邹益胜,邓佳林,等.基于全卷积层神经网络的轴承剩余寿命预测[J.中国机械工程,2019,30(18):2231-2235.

19NECTOUX P,GOURIVEAU R,MEDJAHER Ket al.Pronostia:an Experimental Platform for Bearings Accelerated Degradation TestsC//IEEE International Conference on Prognostics and Health Management.DenverIEEE,2012:1-8.

[1] 韩煜, 张凯.

基于短时傅里叶变换的卷积神经网络复合故障诊断 [J]. 沈阳化工大学学报, 2023, 37(1): 68-73.

[2] 孙丹, 朱立军.

基于BP神经网络和霍夫变换的非理想虹膜定位 [J]. 沈阳化工大学学报, 2023, 37(1): 60-67.

[3] 鸥旭鹏, 张凯.

局部缺陷深沟球轴承动力学建模以及振动分析 [J]. 沈阳化工大学学报, 2023, 37(1): 44-48.

[4] 高巍, 张奥南, 李大舟, 王淮中.

基于淘宝广告数据的点击概率预估模型研究 [J]. 沈阳化工大学学报, 2022, 36(5): 461-467.

[5] 王军, 张志驰.

WSN中基于BP神经网络的数据融合算法优化 [J]. 沈阳化工大学学报, 2022, 36(5): 453-460.

[6] 高云峰, 张金萍.

基于LMD-PSO-ELM的轴承故障诊断与识别 [J]. 沈阳化工大学学报, 2022, 36(5): 428-437.

[7] 高淑芝, 李天池. 基于EEMD特征提取的滚动轴承故障诊断[J]. 沈阳化工大学学报, 2022, 36(2): 151-159.
[8] 诗雨桐, 袁德成.

基于深度学习的面部微表情识别 [J]. 沈阳化工大学学报, 2021, 35(4): 380-384.

[9] 李元, 杨东昇, 李大舟. 基于二维卷积神经网络高层数据特征学习的过程故障检测[J]. 沈阳化工大学学报, 2021, 35(3): 256-264.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed