[1]RAI A,UPADHYAY S H.The Use of MD-CUMSUM and NARX Neural Network for Anticipating the Remaining Useful Life of Bearings [J].Measurement,2017,111:397-410.
[2]LIU Y,ZUO M J,LI Y F,et al.Dynamic Reliability Assessment for Multi-State Systems Utilizing System-Level Inspection Data[J].IEEE Transactions on Reliability,2015,64(4):1287-1299.
[3]DI MAIO F,TSUI K L,ZIO E.Combining Relevance Vector Machines and Exponential Regression for Bearing Residual Life Estimation[J].Mechanical Systems and Signal Processing,2012,31:405-427.
[4]RAI A,UPADHYAY S H.Intelligent Bearing Performance Degradation Assessment and Remaining Useful Life Prediction Based on Self-Organising Map and Support Vector Regression[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2018,232(6):1118-1132. .
[5]BABU G S,ZHAO P L,LI X L.Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life[C]//Database Systems for Advanced Applications.Cham:Springer,2016:214-228.
[6]MAO W T,HE J L,TANG J M,et al.Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Long Short-Term Memory Neural Network[J]. Advances in Mechanical Engineering,2018,10(12):1-18.
[7]REN L,SUN Y Q,WANG H,et al.Prediction of Bearing Remaining Useful Life with Deep Convolution Neural Network[J].IEEE Access,2018,6:13041-13049.
[8]DEUTSCH J,HE M,HE D.Remaining Useful Life Prediction of Hybrid Ceramic Bearings Using an Integrated Deep Learning and Particle Filter Approach[J].Applied Sciences,2017,7(7):649.
[9]WANG F T,LIU X F,DENG G,et al.Remaining Life Prediction Method for Rolling Bearing Based on the Long Short-Term Memory Network[J].Neural Processing Letters,2019,50(3):2437-2454.
[10]CHENG C,MA G J,ZHANG Y,et al.Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks[EB/OL].(2018-12-08)[2020-08-19].https://arxiv.org/abs/1812.03315v1.
[11]REN L,SUN Y Q,CUI J,et al.Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural Networks[J].Journal of Manufacturing Systems,2018,48(Part C):71-77.
[12]ZHU J,CHEN N,PENG W W.Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network[J].IEEE Transactions on Industrial Electronics,2019,66(4):3208-3216.
[13]金志浩,迟展,于宝刚.基于声发射技术的减速顶故障诊断[J].沈阳化工大学学报,2020,34(2):147-152.
[14]GUO L,LEI Y G,LI N P,et al.Deep Convolution Feature Learning for Health Indicator Construction of Bearings[C]//2017 Prognostics and System Health Management Conference(PHM-Harbin).Harbin:IEEE,2017:1-6.
[15]GOODFELLOW I,BENGIO Y,COURVILLE A .Deep Learning[M].Cambridge:the MIT Press,2016:326-366.
[16]LECUN Y,BENGIO Y,HINTON G.Deep Learning[J].Nature,2015,521(7553):436-444.
[17]KINGMA D,BA J.Adam:A Method for Stochastic Optimization[EB/OL].(2014-12-22)[2020-08-20].https://arxiv.org/abs/1412.6980v1.
[18]张继冬,邹益胜,邓佳林,等.基于全卷积层神经网络的轴承剩余寿命预测[J].中国机械工程,2019,30(18):2231-2235.
[19]NECTOUX P,GOURIVEAU R,MEDJAHER K,et al.Pronostia:an Experimental Platform for Bearings Accelerated Degradation Tests[C]//IEEE International Conference on Prognostics and Health Management.Denver:IEEE,2012:1-8.
|