短时傅里叶变换,卷积神经网络,复合故障,滚动轴承," /> 短时傅里叶变换,卷积神经网络,复合故障,滚动轴承,"/> short-time fourier transform,convolutional neural network,composite fault,rolling bearing,"/> <p class="MsoNormal"> 基于短时傅里叶变换的卷积神经网络复合故障诊断
Please wait a minute...
沈阳化工大学学报, 2023, 37(1): 68-73    doi: 10.3969/j.issn.2095-2198.2023.01.011
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

基于短时傅里叶变换的卷积神经网络复合故障诊断

(1. 沈阳化工大学 化学工程学院,(半空)辽宁 沈阳 110142

(2. (沈阳化工大学 装备可靠性研究所, 辽宁 沈阳 110142

Complex Fault Diagnosis of Convolutional Neural Network Based on Short-Time Fourier Transform

下载:  PDF (1227KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对传统故障诊断技术在复杂工况下滚动轴承复合故障振动信号进行故障诊断的准确率较低且泛化能力较差的问题,提出一种基于短时傅里叶变换(STFT)的卷积神经网络故障诊断方法(STFT-CNN.该故障诊断方法首先通过对复杂工况下的振动信号进行短时傅里叶变换,然后通过卷积神经网络对该振动数据进行训练学习,最后进行故障诊断.为验证所提方法的有效性和可行性,在滚动轴承包括复合故障在内的15类故障中,将提出的方法与卷积神经网络(CNN)、支持向量机(SVM)和深度神经网络进行比较,实验对比过程采用相同的滚动轴承数据进行实验,以保证实验的公平性.实验结果证明:该故障诊断方法的故障诊断准确率达到了100%,滚动轴承复合故障诊断准确率得到大幅提升.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  短时傅里叶变换')" href="#">

短时傅里叶变换  卷积神经网络  复合故障  滚动轴承    

Abstract: 

In view of the low accuracy and poor generalization ability of the conventional fault diagnosis technology,a convolutional neural network fault diagnosis method(STFT-CNN) based on short time Fourier transform (STFT) is proposed in this paper.In this fault diagnosis method,short-time Fourier transform(STFT) is applied to vibration signals under complex working conditions,and then the vibration data is trained and learned by convolutional neural network,and finally the fault diagnosis is carried out.In order to verify the effectiveness and feasibility of the proposed method in this paper,the proposed method is compared with convolutional neural network(CNN),support vector machine(SVM) and deep neural network among 15 types of rolling bearing faults including composite faults,In order to ensure the fairness of the experiment,the same rolling bearing data is used in the experimental comparison process.Experimental results show that the fault diagnosis accuracy of this method reaches 100%,which greatly improves the composite fault diagnosis accuracy of rolling bearing.

Key words:  short-time fourier transform')" href="#">

short-time fourier transform    convolutional neural network    composite fault    rolling bearing

               出版日期:  2023-02-27      发布日期:  2024-06-06      整期出版日期:  2023-02-27
ZTFLH: 

TP181

 
  TH133.33+1  
基金资助: 

国家自然科学基金项目(U1708254)

引用本文:    
韩煜, 张凯.

基于短时傅里叶变换的卷积神经网络复合故障诊断 [J]. 沈阳化工大学学报, 2023, 37(1): 68-73.
HAN Yu, ZHANG Kai.

Complex Fault Diagnosis of Convolutional Neural Network Based on Short-Time Fourier Transform . Journal of Shenyang University of Chemical Technology, 2023, 37(1): 68-73.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2023.01.011  或          https://xuebao.syuct.edu.cn/CN/Y2023/V37/I1/68

1]王孝霖,韩伟华,顾含,等.集成经验模态分解与相关峭度在滚动轴承故障诊断中的应用[J.机械设计与制造,2015(9)61-68.

2]刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J.中国电机工程学报,201535(13)3358-3365.

3]陈永会,姜旭,郭山国,等.基于小波分析和Hilbert变换的滚动轴承故障诊断[J.机械设计,201027(8)91-94.

4]吕明珠,苏晓明,陈长征,等.改进粒子群算法优化的支持向量机在滚动轴承故障诊断中的应用[J.机械与电子,2019,37(1)42-48.

5KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet Classification with Deep Convolutional Neural NetworksJ.Communications of the ACM,2017,60(6):84-90.

6LI D H,LIU H.Method and Application of Fault Diagnosis Based on Probabilistic Neural NetworkJ.Systems Engineering and Electronics(China)200426(7)997-999.

7YU D.Deep Learning and Its Applications to Signal and Information ProcessingExploratory Dsp][J.IEEE Signal Processing Magazine201028(1):145-154.

8]刘良顺.基于RBF神经网络的滚动轴承故障诊断方法[J.农业机械学报,2006,37(3)163-165.

9]包文杰.参数化的短时傅里叶变换及齿轮箱故障诊断[J.振动、测试与诊断,2020(2)272-277.

10]曾大有.量子力学中的Heisenberg测不准原理的数学推导以及在小波分析中的应用[J.华北航天工业学院学报,2006(4)33-36.

11]曹继平.基于自适应深度卷积神经网络的发射车滚动轴承故障诊断研究[J.振动与冲击,202039(5)97-104.

[1] 高淑芝, 李天池. 基于EEMD特征提取的滚动轴承故障诊断[J]. 沈阳化工大学学报, 2022, 36(2): 151-159.
[2] 诗雨桐, 袁德成.

基于深度学习的面部微表情识别 [J]. 沈阳化工大学学报, 2021, 35(4): 380-384.

[3] 李元, 杨东昇, 李大舟. 基于二维卷积神经网络高层数据特征学习的过程故障检测[J]. 沈阳化工大学学报, 2021, 35(3): 256-264.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed