[1]王孝霖,韩伟华,顾含,等.集成经验模态分解与相关峭度在滚动轴承故障诊断中的应用[J].机械设计与制造,2015(9):61-68.
[2]刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015,35(13):3358-3365.
[3]陈永会,姜旭,郭山国,等.基于小波分析和Hilbert变换的滚动轴承故障诊断[J].机械设计,2010,27(8):91-94.
[4]吕明珠,苏晓明,陈长征,等.改进粒子群算法优化的支持向量机在滚动轴承故障诊断中的应用[J].机械与电子,2019,37(1):42-48.
[5]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet Classification with Deep Convolutional Neural Networks[J].Communications of the ACM,2017,60(6):84-90.
[6]LI D H,LIU H.Method and Application of Fault Diagnosis Based on Probabilistic Neural Network[J].Systems Engineering and Electronics(China),2004,26(7):997-999.
[7]YU D.Deep Learning and Its Applications to Signal and Information Processing[Exploratory Dsp][J].IEEE Signal Processing Magazine,2010,28(1):145-154.
[8]刘良顺.基于RBF神经网络的滚动轴承故障诊断方法[J].农业机械学报,2006,37(3):163-165.
[9]包文杰.参数化的短时傅里叶变换及齿轮箱故障诊断[J].振动、测试与诊断,2020(2):272-277.
[10]曾大有.量子力学中的Heisenberg测不准原理的数学推导以及在小波分析中的应用[J].华北航天工业学院学报,2006(4):33-36.
[11]曹继平.基于自适应深度卷积神经网络的发射车滚动轴承故障诊断研究[J].振动与冲击,2020,39(5):97-104.
|