非理想虹膜定位,BP神经网络,区域增长,霍夫变换," /> 非理想虹膜定位,BP神经网络,区域增长,霍夫变换,"/> non ideal iris location,BP neural network,region growth,Hough transform,"/> <p class="MsoNormal"> <span>基于</span><span>BP</span><span>神经网络和霍夫变换的非理想虹膜定位</span>
Please wait a minute...
沈阳化工大学学报, 2023, 37(1): 60-67    doi: 10.3969/j.issn.2095-2198.2023.01.010
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

基于BP神经网络和霍夫变换的非理想虹膜定位

(1. 沈阳化工大学 化学工程学院,辽宁 沈阳 110142;

(2. 沈阳化工大学 计算机科学与技术学院, 辽宁 沈阳 110142

Non Ideal Iris Location Based on BP Neural Network and Hough Transform

下载:  PDF (2684KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对传统虹膜定位方法对非理想虹膜定位效果不理想的问题,提出了一种基于BP神经网络和霍夫变换的非理想虹膜定位方法.首先,将要定位的虹膜图像分块,提取每块图像的特征向量;其次,采用BP神经网络的方法,检测边缘块与非边缘块,通过对边缘块进行数学运算实现外边界的精确定位;然后,以外边界的圆心为种子像素,对内边界进行区域增长;最后,利用霍夫变换实现内边界的精确定位.实验结果表明该算法具有较高的准确率,并且对睫毛与眼睑遮挡严重、女生画眼线等情况,该算法也能取得较好的效果.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  非理想虹膜定位')" href="#">

非理想虹膜定位  BP神经网络  区域增长  霍夫变换    

Abstract: 

Aiming at the problem that the traditional iris location method is not ideal for non-ideal iris location,a non-ideal iris location method based on BP neural network and Hough transform is proposed.Firstly,the iris image to be located is divided into blocks,and the feature vector of each image is extracted.Secondly,the method of BP neural network is used to detect the edge block and non-edge block,and the outer boundary is accurately located by mathematical operation of edge block.Then,the center of the outer boundary is the seed pixel,and the inner boundary is region grown.Finally,Hough transform is used to locate the inner boundary accurately,and it can also achieve good results when eyelashes and eyelids are blocked seriously and girls draw eyeliner.

Key words:  non ideal iris location')" href="#">

non ideal iris location    BP neural network    region growth    Hough transform

               出版日期:  2023-02-27      发布日期:  2024-06-06      整期出版日期:  2023-02-27
ZTFLH: 

TP391.41

 
引用本文:    
孙丹, 朱立军.

基于BP神经网络和霍夫变换的非理想虹膜定位 [J]. 沈阳化工大学学报, 2023, 37(1): 60-67.
SUN Dan, ZHU Lijun.

Non Ideal Iris Location Based on BP Neural Network and Hough Transform . Journal of Shenyang University of Chemical Technology, 2023, 37(1): 60-67.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2023.01.010  或          https://xuebao.syuct.edu.cn/CN/Y2023/V37/I1/60

1]秦武旻,朱长婕.虹膜快速检测与精确定位的算法研究[J.国外电子测量技术,2017364):25-28.

2DAUGMAN J G.High Confidence Visual Recognition of Persons by a Test of Statistical IndependenceJ.IEEE Transactions on Pattern Analysis and Machine Intelligence19931511):1148-1161.

3DAUGMAN J.New Methods in Iris RecognitionJ.IEEE Transactions on SystemsManand CyberneticsPart BCybernetics),2007375):1167-1175.

4WILDES R P.Iris Recognitionan Emerging Biometric TechnologyJ.Proceedings of the IEEE1997859):1348-1363.

5]朱立军,苑玮琦.基于并查集和边缘检测模板的非理想虹膜定位[J.计算机应用研究,2018356):1879-1882.

6]王凯,钱沄涛.基于线性基函数模型的虹膜定位[J.光电工程,2011382):97-101.

7]张林,王保强.一种改进的基于Hough变换的虹膜定位算法[J.电子技术应用,2014404):66-69.

8]孙雯雯,周茂霞,白成杰.基于Hough变换的虹膜定位算法[J.计算机与数字工程,2016441):113-117122.

9]王延年,姬乐乐.基于阈值分割及边缘检测的虹膜定位算法[J.微处理机,2016376):34-37.

10]吕金花,孙建平.基于内外边缘分离的虹膜定位方法[J.电力科学与工程,2016328):65-69.

11]杨秀,张轩雄.一种快速有效的虹膜定位方法[J.软件导刊,2019181):61-64.

12]田子林,陈家新.基于最小二乘法与霍夫变换的虹膜定位算法[J.电子技术应用,2019452):75-79.

13]孙正,陈兆学,李晓萌.基于单位扇环灰度的虹膜定位算法[J.光学技术,2019452):228-233.

14ZHONG L HMENG KWANG Yet al.Iris Location Algorithm Based on the CANNY Operator and Gradient Hough TransformJ.IOP Conference SeriesMaterials Science and Engineering2017281012061.

15SARDAR MMITRA SSHANKAR B U.Iris Localization Using Rough Entropy and CSAa Soft Computing ApproachJ.Applied Soft Computing20186761-69.

16MA LLI H FYU K P.Fast Iris Localization Algorithm on Noisy Images Based on Conformal Geometric AlgebraJ.Digital Signal Processing2020100102682.

17]赵娟平,张玉侠.基于BP神经网络整定的PID控制及其仿真研究[J.沈阳化工学院学报,2007212):134-136.

18]任帅男,王庆辉.BP神经网络算法在“摇头”避障小车中的应用[J.沈阳化工大学学报,2020341):51-55.

No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed