多模态故障检测,局部保持投影,变分高斯混合模型,标准化,半导体蚀刻过程," /> 多模态故障检测,局部保持投影,变分高斯混合模型,标准化,半导体蚀刻过程,"/> multimode fault detection,locality preserving projections,variational bayesian Gaussian mixture model,standardization,semiconductor etching,"/> <p class="MsoNormal"> <span>基于</span><span>LPP</span><span>特征空间重构的故障检测策略</span> <p class="MsoNormal"> <span>Fault Detection Strategy Based on the Feature Space Reconstruction of LPP</span>
Please wait a minute...
沈阳化工大学学报, 2023, 37(5): 472-471    doi: 10.3969/j.issn.2095-2198.2023.05.012
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

基于LPP特征空间重构的故障检测策略

Fault Detection Strategy Based on the Feature Space Reconstruction of LPP

1.沈阳化工大学 理学院, 辽宁 沈阳 1101422.沈阳化工大学 技术过程故障诊断与安全性研究中心, 辽宁 沈阳 110142

Fault Detection Strategy Based on the Feature Space Reconstruction of LPP

1.Department of Science, Shenyang University of Chemical Technology, Shenyang 110142, China;2.Research Center for Technical Process Fault Diagnosis and Safety, Shenyang University of Chemical Technology, Shenyang 110142, China

下载:  PDF (1785KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对多模态工业过程数据中存在方差差异显著的问题,提出了一种基于LPP特征空间重构的故障检测策略.首先,采用局部保持投影对过程数据进行降维处理,去除数据的冗余信息和噪声,降低计算复杂度;其次,将变分高斯混合模型应用于过程数据,确定操作模式的数量,并对每种模式下的数据进行聚类;再次,将每种模式下的数据利用所属模式的信息进行标准化处理,去除数据的多模态特征;最后,使用统计量T2对过程进行监控.通过一个多模态数值例子和半导体蚀刻过程验证了所提方法的有效性.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  多模态故障检测')" href="#">

多模态故障检测  局部保持投影  变分高斯混合模型  标准化  半导体蚀刻过程    

Abstract: 

To solve the problem of fault detection in multimodal industrial process date with significant variance difference,a Feature Space Reconfiguration of Locality Preserving Projections(FSR-LPP)fault detection strategy.Firstly,the dimensionality reduction of process data is carried out by using LPP,which removes the redundant information and noise of the data,and the computational complexity is reduced.Then,applying a Variational Gaussian Mixture Model(VBGMM)to unlabeled process data,determine the number of operation modes,and cluster the data in each mode,secondly,the data in each mode is standardized using the information of the mode to remove the multimodal data features,finally,using statistics to monitor the process.The effectiveness of the proposed method was verified through a multimodal numerical example and semiconductor etching process.

Key words:  multimode fault detection')" href="#">

multimode fault detection    locality preserving projections    variational bayesian Gaussian mixture model    standardization    semiconductor etching

               出版日期:  2023-10-27      发布日期:  2024-06-06      整期出版日期:  2023-10-27
ZTFLH: 

TP277

 
基金资助: 

国家自然科学基金资助项目(6149070161673279);辽宁省自然科学基金项目(2019-MS-262);辽宁省教育厅基金项目(LJ2019013)

通讯作者:  李元   
作者简介:  张成(1979—),男,辽宁沈阳人,副教授,博士,主要从事过程故障诊断分析的研究.
引用本文:    
张成1, 赵丽颖2, 杨东昇2, 李元2.

基于LPP特征空间重构的故障检测策略

Fault Detection Strategy Based on the Feature Space Reconstruction of LPP [J]. 沈阳化工大学学报, 2023, 37(5): 472-471.
ZHANG Cheng1, ZHAO Liying2, YANG Dongsheng2, LI Yuan2.

Fault Detection Strategy Based on the Feature Space Reconstruction of LPP . Journal of Shenyang University of Chemical Technology, 2023, 37(5): 472-471.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2023.05.012  或          https://xuebao.syuct.edu.cn/CN/Y2023/V37/I5/472

1]〖ZK(#〗张成,郭青秀,李元,等.基于主元分析得分重构差分的故障检测策略[J].控制理论与应用,2019,36(5):774-782.

2]GAO Z W,DING S X,CECATI C.Real-Time Fault Diagnosis and Fault-Tolerant Control [J].IEEE Transactions on Industrial Electronics,2015,62(6):3752-3756.

3]WANG G Z,LIU J C,ZHANG Y W,et al.A Novel Multi-Mode Data Processing Method and Its Application in Industrial Process Monitoring [J].Journal of Chemometrics,2015,29(2):126-138.

4]郭金玉,刘玉超,李元.基于概率密度PCA的多模态过程故障检测[J].计算机应用研究,2019,36(5):1396-1399,1408.

5]QIN S J.Process Data Analytics in the Era of Big Data [J].AIChE Journal,2014,60(9):3092-3100.

6]郭小萍,刘诗洋,李元.基于稀疏残差距离的多工况过程故障检测方法研究[J].自动化学报,2019,45(3):617-625.

7]YOO Y J.Fault Detection Method Using Multi-Mode Principal Component Analysis Based on Gaussian Mixture Model for Sewage Source Heat Pump System [J].International Journal of Control,Automation and Systems,2019,17(8):2125-2134.

8]KU W F,STORER R H,GEORGAKIS C.Disturbance Detection and Isolation by Dynamic Principal Component Analysis[J].Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196.

9]ZHAO S J,ZHANG J,XU Y M.Monitoring of Processes with Multiple Operating Modes Through Multiple Principle Component Analysis Models [J].Industrial & Engineering Chemistry Research,2004,43(22):7025-7035.

10]ZHANG M G,GE Z Q,SONG Z H,et al.Global-Local Structure Analysis Model and Its Application for Fault Detection and Identification[J].Industrial & Engineering Chemistry Research,2011,50(11):6837-6848.

11]LEWANDOWSKI M,MAKRIS D,VELASTIN S A,et al.Structural Laplacian Eigenmaps for Modeling Sets of Multivariate Sequences [J].IEEE Transactions on Cybernetics,2014,44(6):936-949.

12]YAO B B,SU J,WANG L F,et al.Modified Local Linear Embedding Algorithm for Rolling Element Bearing Fault Diagnosis [J].Applied Sciences,2017,7(11):1178.

13]HE X F,NIYOGI P.Locality Preserving Projections [C]//Proceedings of the 16th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2003:153-160.

14]HE F,XU J W.A Novel Process Monitoring and Fault Detection Approach Based on Statistics Locality Preserving Projections [J].Journal of Process Control,2016,37:46-57.

15]CAI L F,TIAN X M,ZHANG Y X.Dynamic Process Monitoring Based on Orthogonal Locality Preserving Projections and Exponentially Weighted Moving Average[C]//2013 25th Chinese Control and Decision Conference(CCDC).Guiyang:IEEE,2013:4337-4342.

16]刘帮莉,马玉鑫,侍洪波.基于局部密度估计的多模态过程故障检测[J].化工学报,2014,65(8):3071-3081.

17]张成,郭青秀,冯立伟,等.基于局部保持投影-加权k近邻规则的多模态间歇过程故障检测策略[J].控制理论与应用,2019,36(10):1682-1689.

18]HE Q P,WANG J.Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes [J].IEEE Transactions on Semiconductor Manufacturing,2007,20(4):345-354.

19]郭小萍,李婷,李元.基于LPP-kNN方法的间歇过程故障监视[J].沈阳化工大学学报,2017,31(3):261-265.

20]郭金玉,刘玉超,李元.基于局部相对概率密度kNN的多模态过程故障检测[J].高校化学工程学报,2019,33(1):159-166.

21]PENG K X,ZHANG K,YOU B,et al.A Quality-Based Nonlinear Fault Diagnosis Framework Focusing on Industrial Multimode Batch Processes [J].IEEE Transactions on Industrial Electronics,2016,63(4):2615-2624.

22]CHOI S W,PARK J H,LEE I B.Process Monitoring Using a Gaussian Mixture Model via Principal Component Analysis and Discriminant Analysis [J].Computers & Chemical Engineering,2004,28(8):1377-1387.

23]BISHOP C M.Pattern Recognition and Machine Learning(Information Science and Statistics)[M].Berlin:Springer-Verlag,2006:474-485.

24]NASIOS N,BORS A G.Variational Learning for Gaussian Mixture Models [J].IEEE Transactions on Systems,Man,and Cybernetics.Part B,Cybernetics:2006,36(4):849-862.

[25]李元,杨东昇,赵丽颖,等.层次变分高斯混合模型与主多项式分析的故障检测策略[J].化工学报,2021,72(3):1616-1626.

26]LIU J L,CHEN D S.Operational Performance Assessment and Fault Isolation for Multimode Processes [J].Industrial & Engineering Chemistry Research,2010,49(8):3700-3714.

27]WISE B M,GALLAGHER N B,BUTLER S W,et al.A Comparison of Principal Component Analysis,Multiway Principal Component Analysis,Trilinear Decomposition and Parallel Factor Analysis for Fault Detection in a Semiconductor Etch Process[J].Journal of Chemometrics,1999,13(3/4):379-396.

28HE Q P,WANG J.Statistics Pattern Analysis:a New Process Monitoring Framework and Its Application to Semiconductor Batch Processes J.AIChE Journal,2011,57(1):107-121.

[1] 张成, 郭青秀, 李元.

指数比率局部保持投影健康状态监控方法及其半导体蚀刻过程应用 [J]. 沈阳化工大学学报, 2021, 35(4): 366-373.

[2] 郭金玉, 刘玉超, 李元.

加权局部近邻标准化PCA的工业过程故障检测 [J]. 沈阳化工大学学报, 2021, 35(3): 265-274.

No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed