线上求解法,Burgers方程,模型求解,MATLAB,化工过程," /> 线上求解法,Burgers方程,模型求解,MATLAB,化工过程,"/> method of lines,Burgers equation,model solution,MATLAB,chemical process,"/> <p class="MsoNormal"> 线上求解法最优近似格式的探讨及应用
Please wait a minute...
沈阳化工大学学报, 2022, 36(6): 557-561    doi: 10.3969/j.issn.2095-2198.2022.06.015
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

线上求解法最优近似格式的探讨及应用

沈阳化工大学 化学工程学院,辽宁 沈阳 110142;

(沈阳化工大学 信息工程学院,辽宁 沈阳 110142

Discussion and Application of the Optimal Approximate Format on Method of Lines

(Shenyang University of Chemical Technology, Shenyang 110142, China)

(Shenyang University of Chemical Technology, Shenyang 110142, China)

下载:  PDF (597KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

现代科学研究中,建立复杂模型的方程常常会出现偏微分方程的形式,此时对模型进行求解可采用线上求解法思想,将偏微分方程转换为常微分方程再求解.应用线上求解法的不同近似格式会有不同的结果和误差,因此探寻最优近似格式是科学研究中避免误差的重要步骤.Burgers方程的基础上,应用MATLAB工具探讨了线上求解法的最优近似格式,并结合化工过程应用中的实际模型进行分析验证,结果表明线上求解法存在最优近似格式,通过应用此种格式可快速准确地求解化工过程模型,并能得到理想的模型曲线.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  线上求解法')" href="#">

线上求解法  Burgers方程  模型求解  MATLAB  化工过程    

Abstract: 

In modern scientific research,the equations of complex models often appear in the form of partial differential equations At this time,the model can be solved by using the online solution method,and the partial differential equations can be converted into ordinary differential equations and then solved Different approximation formats of online solution method will also have different results and errors,so exploring the optimal approximation format is an important step in scientific research to avoid errors Based on the Burgers equation,this paper discusses the optimal approximate format of online solution method with MATLAB tool,and the analysis and verification are combined with the actual model in the chemical process application The results show that there is an optimal approximate format for the online solution method By applying this format,the chemical process model can be solved quickly and accurately,and an ideal model curve can be obtained.

Key words:  method of lines')" href="#">

method of lines    Burgers equation    model solution    MATLAB    chemical process

               出版日期:  2022-12-31      发布日期:  2024-06-06      整期出版日期:  2022-12-31
ZTFLH: 

TP301.6

 
  TQ015  
引用本文:    
刘阳, 李凌.

线上求解法最优近似格式的探讨及应用 [J]. 沈阳化工大学学报, 2022, 36(6): 557-561.
LIU Yang, LI Ling.

Discussion and Application of the Optimal Approximate Format on Method of Lines . Journal of Shenyang University of Chemical Technology, 2022, 36(6): 557-561.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2022.06.015  或          https://xuebao.syuct.edu.cn/CN/Y2022/V36/I6/557

1WOUWER A V,SAUCEZ P,SCHIESSER W E.Adaptive Method of Lines M.Boca RatonCRC Press,2001:86-92.

2CASH J R,PSIHOYIOS Y.The MOL Solution of Time Deependent Partial Differential Equations J.Computers & Mathematics with Applications,1996,31(11):69-78.

3]李凌,袁德成,井元伟,等.基于线上求解法的分布参数系统仿真[C//第八届全国信息获取与处理学术会议论文集.北京:《仪器仪表学报》杂志社,2010:509-511.

4]叶忠建.模拟移动床数值建模及优化控制[D.无锡:江南大学,2013:16-21.

5]危凤,沈波,周先波.线上求解法和MATLAB用于色谱分离动力学模拟[J.计算机与应用化学,200522(9):745-748.

6]危凤,沈波,陈明杰.奥美拉唑对映体的模拟移动床色谱分离过程模拟[J.高校化学工程学报,200519(4):456-460.

7]石向成,万澍,赵英杰,.基于MATLAB的固定床列管反应器工艺条件的解析计算[J.计算机与应用化学,2016,33(7):767-774.

8]邓家璧,李凌.模拟移动床分离过程的模型预测控制方法研究[J.计算机与应用化学,2017,34(6):447-452.

9]赵文丹,汪定伟,李凌.流程工业混杂供应链库存控制的建模与仿真[J.沈阳化工大学学报,2019,33(2):159-164.

No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed