Faster R-CNN,海洋鱼类检测,特征融合,ROI Align," /> Faster R-CNN,海洋鱼类检测,特征融合,ROI Align,"/> Faster R-CNN,marine fish detection,feature fusion,ROI Align,"/> <p class="MsoNormal"> <span>改进的</span><span>Faster R-CNN</span><span>海洋鱼类检测模型</span>
Please wait a minute...
沈阳化工大学学报, 2022, 36(6): 562-568    doi: 10.3969/j.issn.2095-2198.2022.06.016
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

改进的Faster R-CNN海洋鱼类检测模型


沈阳化工大学 化学工程学院,辽宁 沈阳 110142;

(沈阳化工大学 计算机科学与技术学院,辽宁 沈阳 110142

Improved Faster R-CNN Marine Fish Detection Model

(Shenyang University of Chemical Technology, Shenyang 110142, China)

Shenyang University of Chemical TechnologyShenyang 110142China

下载:  PDF (828KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为提高海洋鱼类检测的准确率,提出一种基于Faster R-CNN的海洋鱼类检测方法.首先,利用迁移学习方法训练Faster R-CNN网络,克服海洋鱼类样本集有限的限制;其次,增加颈部连接层,使用双向特征金字塔网络(BiFPN)进行特征融合,得到具有丰富位置信息和语义信息的融合特征图;再次,将卷积层输出的特征矩阵作外积相乘运算,提高对相似海洋鱼类的识别精度;最后,结合Mask R-CNN中的ROI Align方法对预测位置进行二次修正,使检测框更加准确.实验结果表明,在检测海洋鱼类数据集时,与原始的Faster R-CNN算法相比,改进后的 Faster R-CNN 检测模型的平均准确度均值提高了7.4%.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  Faster R-CNN')" href="#">

Faster R-CNN  海洋鱼类检测  特征融合  ROI Align    

Abstract: 

In order to improve the accuracy of marine fish detectiona Faster R-CNN based detection method for marine fish is proposed.Firstlythe Faster R-CNN network is trained by using the migration learning method to overcome the limited sample set of marine fishes.Secondlythe neck connection layer is added and the bi-directional feature pyramid network(BiFPN) is used to fuse the features.The fusion feature map with rich position information and semantic information is obtained.Then the feature matrix output from the convolution layer is multiplied by the outer product to improve the recognition accuracy of similar marine fishes.Finallythe ROI Align method in Mask R-CNN is combined.In order to make the detection frame more accuratealign method modifies the prediction position twice.The experimental results show that compared with the original Faster R-CNN algorithmthe average accuracy of the improved Faster R-CNN detection model is improved by 7.4% in the marine fish data set.

Key words:  Faster R-CNN')" href="#">

Faster R-CNN    marine fish detection    feature fusion    ROI Align

               出版日期:  2022-12-31      发布日期:  2024-06-06      整期出版日期:  2022-12-31
ZTFLH: 

TP391.4

 
引用本文:    
张翔宇, 朱立军.

改进的Faster R-CNN海洋鱼类检测模型 [J]. 沈阳化工大学学报, 2022, 36(6): 562-568.
ZHANG Xiang-yu, ZHU Li-jun.

Improved Faster R-CNN Marine Fish Detection Model . Journal of Shenyang University of Chemical Technology, 2022, 36(6): 562-568.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2022.06.016  或          https://xuebao.syuct.edu.cn/CN/Y2022/V36/I6/562

1ALSMADI M KOMAR KNOAH S Aet al.Fish Recognition Based on Robust Features Extraction from Size and Shape Measurements Using Neural NetworkJ.Journal of Computer Science20106(10):1088-1094.

2HU JLI D LDUAN Q Let al.Fish Species Classification by ColorTexture and Multi-Class Support Vector Machine Using Computer VisionJ.Computers and Electronics in Agriculture201288:133-140.

3]姚润璐,桂詠雯,黄秋桂.基于机器视觉的淡水鱼品种识别[J.微型机与应用,201736(24):37-39.

4]吴一全,殷骏,戴一冕,等.基于蜂群优化多核支持向量机的淡水鱼种类识别[J.农业工程学报,201430(16):312-319.

5]顾郑平,朱敏.基于深度学习的鱼类分类算法研究[J.计算机应用与软件,201835(1):200-205.

6GIRSHICK RDONAHUE JDARRELL Tet al.Rich Feature Hierarchies for Accurate Object Detection and Semantic SegmentationC//2014 IEEE Conference on Computer Vision and Pattern Recognition.ColumbusIEEE2014:580-587.

7GIESHICK R.Fast R-CNNC//2015 IEEE International Conference on Computer VisionICCV.SantiagoIEEE2015:1440-1448.

8REN S QHE K MGIRSHICK Ret al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal NetworksC//Proceedings of the 28th International Conference on Neural Information Processing Systems.MontrealMIT Press2015:91-99.

9LIU WANGUELOV DERHAN Det al.SSD:Single Shot MultiBox DetectorC//Computer VisionECCV 2016.ChamSpringer2016:21-37.

10REDMON JDIVVALA SGIRSHICK Ret al.You Only Look Once:UnifiedReal-Time Object DetectionC//2016 IEEE Conference on Computer Vision and Pattern RecognitionCVPR.Las VegasIEEE2016:779-788.

11REDMON JFARHADI A.YOLO9000:BetterFasterStrongerC//2017 IEEE Conference on Computer Vision and Pattern RecognitionCVPR.HonoluluIEEE2017:6517-6525.

12REDMON JFARHADI A.YOLOv3:An Incremental ImprovementEB/OL.(2018-04-8)2020-06-24.http://arxiv.org/abs/1804.02767.pdf.

13]袁红春,张硕.基于Faster R-CNN和图像增强的水下鱼类目标检测方法[J.大连海洋大学学报,202035(4):612-619.

14LI XTANG Y HGAO T W.Deep but Lightweight Neural Networks for Fish DetectionC//OCEANS 2017-Aberdeen:IEEE20171-5.

15LIN T YDOLLAR PGIESHICK Ret al.Feature Pyramid Networks for Object DetectionC//2017 IEEE Conference on Computer Vision and Pattern RecognitionCVPR.HonoluluIEEE2017:936-944.

16TAN M XPANG R MLE Q Vet al.EfficientDet:Scalable and Efficient Object DetectionEB/OL.(2020-07-27)2020-06-24.https://arxiv.org/pdf/1911.09070.pdf.

17LI H CXIONG P FAN Jet al.Pyramid Attention Network for Semantic SegmentationEB/OL.(2018-11-25)2020-06-24.https://arxiv.org/abs/1805.10180.pdf.

18CHOLLET F.Xception:Deep Learning with Depthwise Separable ConvolutionsC//2017 IEEE Conference on Computer Vision and Pattern RecognitionCVPR.HonoluluIEEE2017:1800-1807.

19LIN T YROYCHOWDHURY AMAJI S.Bilinear CNN Models for Fine-Grained Visual RecognitionC//2015 IEEE International Conference on Computer VisionICCV.SantiagoIEEE2015:1449-1457.

20HE K MGKIOXARI GDOLLAR Pet al.Mask R-CNNC//2017 IEEE International Conference on Computer VisionICCV.VeniceIEEE2017:2980-2988.

No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed