光催化,电荷迁移,异质结," />

光催化,电荷迁移,异质结,"/> photocatalysis,charge transfer,heterojunction,"/> <p class="MsoPlainText"> g-C<sub><span>3</span></sub>N<sub><span>4</span></sub>/Cu<sub><span>5</span></sub>FeS<sub><span>4</span></sub>/Au三元光催化剂的设计、合成及催化性质的研究

Please wait a minute...
沈阳化工大学学报, 2024, 38(2): 97-102    
  化学与化学工程 本期目录 | 过刊浏览 | 高级检索 |

g-C3N4/Cu5FeS4/Au三元光催化剂的设计、合成及催化性质的研究

(1.沈阳化工大学 理学院, 辽宁 沈阳 110142;2.沈阳化工大学 材料科学与工程学院, 辽宁 沈阳 110142)

The Design and Synthesis of g-C3N4/Cu5FeS4/Au Ternary Heterjunction Photocatalyst and Study on Properties

1. College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China;2.Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China)

下载:  PDF (1964KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用简单的方法成功合成了三元g-C3N4/Cu5FeS4/Au异质结光催化剂,系统研究了Au沉积和Cu5FeS4耦合对g-C3N4性能的影响,将三乙醇胺作为牺牲剂并通过在可见光照射下的光解水反应评估其光催化活性.实验结果表明:g-C3N4/0.75%Cu5FeS4/0.75% Au纳米复合材料具有最高的析氢活性(119.52μmol·h-1·g-1),分别是纯g-C3N4(10.44μmol·h-1·g-1)11.45倍和g-C3N4/Cu5FeS4(27.32 μmol·h-1·g-1)二元结构的4.37.光催化活性的提高可归因于以Cu5FeS4为电子桥的组件形成的典型II型异质结可以提高电荷分离效率,并且三个组件间牢固界面的接触可以提供更多的电荷迁移途径,以实现跨界面的有效电荷转移.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词: 

光催化')" href="#">

光催化  电荷迁移  异质结    

Abstract: 

A series of g-C3N4/Cu5FeS4/Au ternary heterojunction were synthesized by simple method.The effects of Au deposition and Cu5FeS4coupling on the performance of g-C3N4were systematically studied,and the photocatalytic activity of triethanolamine as a sacrificial agent was evaluated by photolysis of water under visible light irradiation.Combining with the results of a series of characterized analysis it is shown that:Theg-C3N4/0.75%Cu5FeS4/0.75%Au ternary composites exhibited highly enhanced visible light photocatalytic H2 evolution from water-splitting(119.52μmol·h-1·g-1),which was about 11.45 and 4.37 times higher than those of g-C3N4(10.44 μmol·h-1·g-1)andg-C3N4/Cu5FeS4(27.32 μmol·h-1·g-1)under identical conditions.The enhanced photocatalytic activity can be attributed to the assembly with Cu5FeS4 as electron bridge forming typical Type II alignment can improve the charge separation efficiency and the strong interfacial contact between the three component can provide more charge migration wayfor efficient charge transfer across the interface.

Key words:  photocatalysis')" href="#">

photocatalysis    charge transfer    heterojunction

               出版日期:  2024-04-30      发布日期:  2024-12-31      整期出版日期:  2024-04-30
ZTFLH: 


 
基金资助: 国家自然科学基金(51402198,21671139
通讯作者:  高雨   
作者简介:  郑佳欣(1993—),女,内蒙古通辽人,硕士研究生在读,主要从事光催化领域的研究.
引用本文:    
郑佳欣1, 徐宝彤1, 礼峥2, 钱坤1, 徐振和1, 高雨2.

g-C3N4/Cu5FeS4/Au三元光催化剂的设计、合成及催化性质的研究 [J]. 沈阳化工大学学报, 2024, 38(2): 97-102.
ZHENG Jiaxin1, XU Baotong1, LI Zheng2, QIAN Kun1, XU Zhenhe1, GAO Yu2.

The Design and Synthesis of g-C3N4/Cu5FeS4/Au Ternary Heterjunction Photocatalyst and Study on Properties . Journal of Shenyang University of Chemical Technology, 2024, 38(2): 97-102.

链接本文:  
https://xuebao.syuct.edu.cn/CN/  或          https://xuebao.syuct.edu.cn/CN/Y2024/V38/I2/97

1]XIAO T T,TANG Z,YANG Y,et al.In Situ Construction of Hierarchical WO3/g-C3N4 Composite Hollow Microspheres as a Z-Scheme Photocatalyst for the Degradation of Antibiotics[J].Applied Catalysis B:Environmental,2018,220:417-428.

2]李旭力,王晓静,赵君,等.催化分解水制氢体系助催化剂研究进展[J].材料导报,2018,32(7):1057-1064.

3]FUJISHIMA A,HONDA K.Electrochemical Photolysis of Water at a Semiconductor Electrode[J].Nature,1972,238(5358):37-38.

4]陈文萱,薛珍,申延明.CuO-TiO2复合氧化物可见光催化剂的制备[J].沈阳化工大学学报,2017,31(2):124-128,133.

5]TANG L,HAN B,PERSSON K,et al.Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments[J].Journal of the American Chemical Society,2010,132(2):596-600.

6]WANG Y,KIM J C,WU R J,et al.Van der Waals Contacts between Three-Dimensional Metals and Two-Dimensional Semiconductors[J].Nature,2019,568(7750):70-74.

7]GRANATIER J,LAZAR P,OTYEPKA M,et al.The Nature of the Binding of Au,Ag,and Pd to Benzene,Coronene,and Graphene:from Benchmark CCSD(T)Calculations to Plane-Wave DFT Calculations[J].Journal of Chemical Theory and Computation,2011,7(11):3743-3755.

8]SIL S,DATTA J,DAS M,et al.Bias Dependent Conduction and Relaxation Mechanism Study of Cu5FeS4 Film and Its Significance in Signal Transport Network[J].Journal of Materials Science:Materials in Electronics,2018,29(6):5014-5024.

9]XU Z H,QUINTANILLA M,VETRONE F,et al.Harvesting Lost Photons:Plasmon and Upconversion Enhanced Broadband Photocatalytic Activity in Core@ Shell Microspheres Based on Lanthanide-Doped NaYF4,TiO2,and Au[J].Advanced Functional Materials,2015,25(20):2950-2960.

10]OSTOVARI MOGHADDAM A,SHOKUHFAR A,CABOT A,et al.Synthesis of Bornite Cu5FeS4 Nanoparticles via High Energy Ball Milling:Photocatalytic and Thermoelectric Properties[J].Powder Technology,2018,333:160-166.

11]ZHAO W J,WANG S F,LIU B,et al.Exciton-Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles[J].Advanced Materials,2016,28(14):2709-2715.

12]KANG D H,PAE S R,SHIM J,et al.An Ultrahigh Performance Photodetector Based on a Perovskite Transition-Metal-Dichalcogenide Hybrid Structure[J].Advanced Materials,2016,28(35):7799-7806.

13]LI H,WANG L B,DAI Y Z,et al.Synergetic Interaction between Neighbouring Platinum Monomers in CO2 Hydrogenation[J].Nature Nanotechnology,2018,13(5):411-417.

14]KONG H J,WON D H,KIM J,et al.Sulfur-Doped g-C3N4/BiVO4 Composite Photocatalyst for Water Oxidation under Visible Light[J].Chemistry of Materials,2016,28(5):1318-1324.

15]JIANG L B,YUAN X Z,ZENG G M,et al.In-Situ Synthesis of Direct Solid-State Dual Z-Scheme WO3/g-C3N4/Bi2O3  Photocatalyst for the Degradation of Refractory Pollutant[J].Applied Catalysis B:Environmental,2018,227:376-385.

16ZENG D Q,XU W J,ONG W J,et al.Toward Noble-Metal-Free Visible-Light-Driven Photocatalytic Hydrogen Evolution:Monodisperse Sub-15 nm Ni2P Nanoparticles Anchored on Porous g-C3N4 Nanosheets to Engineer 0D-2D Heterojunction InterfacesJ.Applied Catalysis B:Environmental,2018,221:47-55.

[1] 礼峥, 徐宝彤, 邱永堃, 丁茯, 孙亚光, 高雨.

g-C3N4/CeO2/Ag三元纳米光催化剂的制备及其光催化性能研究 [J]. 沈阳化工大学学报, 2024, 38(2): 103-109.

No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed