3D打印,激光加工,质子导体陶瓷,先进加工技术," /> 3D打印,激光加工,质子导体陶瓷,先进加工技术,"/> 3D Printing,laser processing,protonic ceramics,novel manufacturing method,"/> <p class="MsoNormal"> <span>3D</span><span>打印</span><span>-</span><span>激光烧结</span><span>-</span><span>微纳加工平台高效制备质子导体能源器件</span>
Please wait a minute...
沈阳化工大学学报, 2023, 37(3): 222-232    doi: 10.3969/j.issn.2095-2198.2023.03.005
  材料科学与工程 本期目录 | 过刊浏览 | 高级检索 |

3D打印-激光烧结-微纳加工平台高效制备质子导体能源器件

1.沈阳化工大学 材料科学与工程学院,辽宁 沈阳 110142;

2.沈阳化工大学 辽宁省特种功能材料合成与制备重点实验室,辽宁 沈阳 110142

Protonic Ceramic Energy Devices Efficiently Manufacturing Through 3D Printing-Laser Sintering-Micro-Machining Method

1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;

2.Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China

下载:  PDF (4911KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为实现基于具有高质子传导性的质子陶瓷材料——钙钛矿的能源器件可以广泛应用,解决其高耐火性、易碎裂等特征导致的加工工艺复杂且局限的问题,开发一种集成了基于微挤压的3D打印和精确快速的激光加工(烧结、干燥、切割与抛光)的新型激光3D打印技术,并将其应用于制造质子导体能源器件,实现高能量密度集成器件的快速高效低成本的制造方法.利用3D打印将自主研发的质子陶瓷原粉浆料按照设计模型进行逐层打印;利用CO2激光对打印层进行快速干燥以及原位反应烧结;利用皮秒激光对加工层进行微纳加工,如抛光与切割等.通过实验可知:该技术成功3D打印制造了质子导体能源器件;激光反应烧结了原粉,获得了钙钛矿晶体结构的质子陶瓷;利用皮秒激光快速精准加工了微通道能源器件;加工制备了燃料电池且制备的器件具有不输于已报道的传统工艺的性能,其电解质电导率约为 6.95×10-3 S/cm.实验结果表明:3D打印-激光烧结-微纳加工平台不仅可以高效精准制造质子陶瓷材料及其能源器件,而且可以实现传统工艺无法制备的具有复杂结构的器件,同时为基于质子导体材料的能源器件未来的实际投入使用带来可能.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  3D打印')" href="#">

3D打印  激光加工  质子导体陶瓷  先进加工技术    

Abstract: 

Perovskite,a proton conducting ceramic material with high proton conductivity,became one of the preferred materials for energy conversion and storage devices.Due to the characteristics of fire resistance and easy cracking,the processing technology of this kind of material was complicated and limited.One of the keys to realize the wide application of energy devices based on this kind of materials was to solve its low-cost,fast,efficient and non-destructive preparation process.This work enabled fast,efficient and cost-effective fabrication of high energy density integrated devices by developing a novel laser 3D printing technology that integrates micro-extrusion-based 3D printing with accurate and rapid laser machining(sintering,drying,cutting and polishing)and applying it to proton conductor energy devices.The self-developed proton ceramic slurry was printed layer by layer according to the designed model through 3D printing.Rapid drying and in-situ reaction sintering of the printing layer were carried out by CO2 laser.Picosecond laser was used for micro-nano processing of the machining layer,such as polishing and cutting.Through the experiment,the method successfully 3D printed the proton conductor energy device;the original powder was sintered by laser reaction and the perovskite crystal structure proton ceramics were obtained;the microchannel energy device was rapidly and accurately machined by picosecond laser;the fuel cells were fabricated and the fabricated devices had the same performance as the reported traditional processes,such as the electrolyte conductivity of ~6.95×10-3 S/cm.The results showed that the technology platform proposed in this work can not only efficiently and accurately manufacture proton ceramic materials and energy devices,but also realized the device with complex structure that cannot be fabricated by the traditional process.At the same time,it created the possibility for the future practical application of energy devices based on proton conductor materials.

Key words:  3D Printing')" href="#">

3D Printing    laser processing    protonic ceramics    novel manufacturing method

               出版日期:  2023-06-30      发布日期:  2024-03-11      整期出版日期:  2023-06-30
ZTFLH: 

V261.8

 
  TB34  
基金资助: 

国家自然科学基金项目(52202271);辽宁省博士科研启动基金计划项目(2023-BS-144)

作者简介:  穆生龙(1992—),男(回族),辽宁辽阳人,讲师,博士,主要从事功能陶瓷材料加工与能源器件先进制造的研究.
引用本文:    
穆生龙1, 2, 刘志鹏1, 于孟阳1, 王娜1, 2.

3D打印-激光烧结-微纳加工平台高效制备质子导体能源器件 [J]. 沈阳化工大学学报, 2023, 37(3): 222-232.
MU Shenglong1, 2, LIU Zhipeng1, YU Mengyang1, WANG Na1, 2.

Protonic Ceramic Energy Devices Efficiently Manufacturing Through 3D Printing-Laser Sintering-Micro-Machining Method . Journal of Shenyang University of Chemical Technology, 2023, 37(3): 222-232.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2023.03.005  或          https://xuebao.syuct.edu.cn/CN/Y2023/V37/I3/222

1]KOCHETOVA N,ANIMITSA I,MEDVEDEV D,et al.Recent Activity in the Development of Proton-Conducting Oxides for High-Temperature Applications[J].RSC Advances,2016,6(77):73222-73268.

2]MENG Y Q,GAO J,ZHAO Z Y,et al.Review:Recent Progress in Low-Temperature Proton-Conducting Ceramics[J].Journal of Materials Science,2019,54(13):9291-9312.

[3]KIM J,SENGODAN S,KIM S,et al.Proton Conducting Oxides:a Review of Materials and Applications for Renewable Energy Conversion and Storage[J].Renewable and Sustainable Energy Reviews,2019,109:606-618.

4]DUAN C C,KEE R J,ZHU H Y,et al.Highly Durable,Coking and Sulfur Tolerant,Fuel-Flexible Protonic Ceramic Fuel Cells[J].Nature,2018,557(7704):217-222.

5]道达·萨达·阿巴,吕翔宇,马宗虎,等.利用生物燃料电池处理有机废物和废水[J].沈阳化工大学学报,2014,28(4):377-384.

6]AN H,LEE H W,KIM B K,et al.A5×5 cm2 Protonic Ceramic Fuel Cell with a Power Density of 1.3 W·cm-2 at 600 ℃[J].Nature Energy,2018,3(10):870-875.

7]DUAN CC,TONG J H,SHANG M,et al.Readily Processed Protonic Ceramic Fuel Cells with High Performance at Low Temperatures[J].Science,2015,349(6254):1321-1326.

8]YANG L,WANG S Z,BLINN K,et al.Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductorfor SOFCs:BaZr0.1Ce0.7Y0.2-xYbxO3-δJ].Science,2009,326(5949):126-129.

[9]VLLESTAD E,STRANDBAKKE R,TARACH M,et al.Mixed Proton and Electron Conducting Double Perovskite Anodes for Stable and Efficient Tubular Proton Ceramic Electrolysers[J].Nature materials,2019,18(7):752-759.

10]DUAN C C,KEE R,ZHU H Y,et al.Highly Efficient Reversible Protonic Ceramic Electrochemical Cells for Power Generation and Fuel Production[J].Nature Energy,2019,4(3):230-240.

11]CHOI S,DAVENPORT T C,HAILE S M.Protonic Ceramic Electrochemical Cells for Hydrogen Production and Electricity Generation:Exceptional Reversibility,Stability,and Demonstrated Faradaic Efficiency[J].Energy & Environmental Science,2019,12(1):206-215.

12]HUANG H,CHENG S Y,GAO J F,et al.Phase-Inversion Tape-Casting Preparation and Significant Performance Enhancement of Ce0.9Gd0.1O1.95-La0.6Sr0.4Co0.2Fe0.8O3-δDual-Phase Asymmetric Membrane for Oxygen Separation[J].Materials Letters,2014,137:245-248.

[13]HUANG H,LIN J,WANG Y L,et al.Facile One-Step Forming of NiO and Yttrium-Stabilized Zirconia Composite Anodes with Straight Open Pores for Planar Solid Oxide Fuel Cell Using Phase-Inversion Tape Casting Method[J].Journal of Power Sources,2015,274:1114-1117.

14]MIAO P,LIU T,ZHANG C,et al.Fluorescent Aliphatic Hyperbranched Polyether:Chromophore-Free and Without Any N and P Atoms[J].Physical Chemistry Chemical Physics,2016,18(6):4295-4299.

15]MALERD-FJELD H,CLARK D,YUSTE-TIRADOS I,et al.Thermo-Electrochemical Production of Compressed Hydrogen from Methane with Near-Zero Energy Loss[J].Nature Energy,2017,2(12):923-931.

16]MOREJUDO S H,ZANN R,ESCOLSTICO S,et al.Direct Conversion of Methane to Aromatics in a Catalytic Co-Ionic Membrane Reactor[J].Science,2016,353(6299):563-566.

17]ESCOLSTICO S,SOLS C,KJLSETH C,et al.Outstanding Hydrogen Permeation through CO2-Stable Dual-Phase Ceramic Membranes[J].Energy & Environmental Science,2014,7(11):3736-3746.

18]REBOLLO E,MORTALC,ESCOLSTICO S,et al.Exceptional Hydrogen Permeation of All-Ceramic Composite Robust Membranes Based on BaCe0.65Zr0.20Y0.15O3-δ and Y-or Gd- Doped Ceria[J].Energy & Environmental Science,2015,8(12):3675-3686.

19]YIN J L,WANG W,xU J H,et al.Ionic Conduction in BaCe0.85-xZrxEr0.15O3-α and Its Application to Ammonia Synthesis at Atmospheric Pressure[J].Solid State Ionics,2011,185(1):6-10.

20]ZHANG M,XU J,MA G L.Proton Conduction in BaxCe0.8Y0.2O3-α+0.04ZnO at Intermediate Temperatures and Its Application in Ammonia Synthesis at Atmospheric Pressure[J].Journal of Materials Science,2011,46(13):4690-4694.

21]ROBINSON S,MANERBINO A,COORS W G.Galvanic Hydrogen Pumping in the Protonic Ceramic Perovskite BaCe0.2Zr0.7Y0.1O3-δJ].Journal of Membrane Science,2013,446:99-105.

[22]VASILEIOU E,KYRIAKOU V,GARAGOUNIS I,et al.Ammonia Synthesis at Atmospheric Pressure in a BaCe0.2Zr0.7Y0.1O2.9 Solid Electrolyte Cell[J].Solid State Ionics,2015,275:110-116.

23]KLINSRISUK S,IRVINE J T S.Electrocatalytic Ammonia Synthesis Via a Proton Conducting Oxide Cell with BaCe0.5Zr0.3Y0.16Zn0.04O3-δ Electrolyte Membrane[J].Catalysis Today,2017,286:41-50.

24]于萍,王腾,赵中俊,等.合成工艺对钙钛矿型LaCo1-xWxO3催化剂光催化性能的影响[J].沈阳化工大学学报,2018,32(1):35-39.

25]JANG W S,HYUN S H,KIM S G.Preparation of YSZ/YDC and YSZ/GDC Composite Electrolytes by the Tape Casting and Sol-Gel Dip-Drawing Coating Method for Low-Temperature SOFC[J].Journal of Materials Science,2002,37(12):2535-2541.

26]HOTZA D,GREIL P.Review:Aqueous Tape Casting of Ceramic Powders[J].Materials Science and Engineering:A,1995,202(1/2):206-217.

27]HAMMEL E C,IGHODARO O L R,OKOLI O I.Processing and Properties of Advanced Porous Ceramics:an Application Based Review[J].Ceramics International,2014,40(10):15351-15370.

28]COLOMBO P.Conventional and Novel Processing Methods for Cellular Ceramics[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2006,364(1838):109-124.

29]HUANG Y,LEU M C,MAZUMDER J,et al.Additive Manufacturing:Current State,Future Potential,Gaps and Needs,and Recommendations[J].Journal of Manufacturing Science and Engineering,2015,137(1):014001.

30GAO W,ZHANG Y B,RAMANUJAN D,et al.The Status,Challenges,and Future of Additive Manufacturing in EngineeringJ.Computer-Aided Design,2015,69:65-89.

No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed