[1]HAZAN E,AGARWAL A,KALE S.Logarithmic Regret Algorithms for Online Convex Optimization[J].Machine Learning,2007,69(2):169-192.
[2]RUDER S.An Overview of Gradient Descent Optimization Algorithms[EB/OL].(2017-06-15)[2020-09-05].https://arxiv.org/abs/1609.04747.
[3]RENDLE S.Factorization Machines[C]//2010 IEEE International Conference on Data Mining.Piscataway:IEEE,2010:995-1000.
[4]ZHANG T,MENG S.Internet Financial Credit Evaluation Based on the Fusion of GBDT and LR[C]//Proceedings of the 2018 International Conference on Management,Economics,Education and Social Sciences(MEESS 2018).Amsterdam:Atlantis Press,2018:86-91.
[5]GUO H F,TANG R M,YE Y M,et al.DeepFM:a Factorization-Machine Based Neural Network for CTR Prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Palo Alto:AAAI Press,2017:1725-1731.
[6]QU Y R,CAI H,REN K,et al.Product-Based Neural Networks for User Response Prediction[C]//2016 IEEE 16th International Conference on Data Mining (ICDM).Piscataway:IEEE,2016:1149-1154.
[7]QU Y R,FANG B H,ZHANG W N,et al.Product-Based Neural Networks for User Response Prediction Over Multi-Field Categorical Data[J].ACM Transactions on Information Systems,2018,37(1):1-35.
[8]COVINGTON P,ADAMS J,SARGIN E.Deep Neural Networks for Youtube Recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York:Association for Computing Machinery,2016:191-198.
[9]CHENG H T,KOC L,HARMSEN J,et al.Wide & Deep Learning for Recommender Systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.New York:Association for Computing Machinery,2016:7-10.
[10]ZHANG W N,DU T M,WANG J.Deep Learning Over Multi-Field Categorical Data——a Case Study on User Response Prediction[M]//FERRO 〖JP3〗N,CRESTANI F,MOENS M F,et al.Advances in Information Retrieval.Cham:Springer,2016:45-47.
[11]LIAN J K,ZHOU X H,ZHANG F Z,et al.xDeepFM:Combining Explicit and Implicit Feature Interactions for Recommender Systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:Association for Computing Machinery,2018:1754-1763.
[12]ZHOU G R,SONG C R,ZHU X Q,et al.Deep Interest Network for Click-Through Rate Prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:Association for Computing Machinery,2018:1059-1068.
[13]ZHENG Y,ZHANG Y J,LAROCHELLE H.A Deep and Autoregressive Approach for Topic Modeling of Multimodal Data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(6):1056-1069.
[14]CHEN J X,SUN B G,LI H,et al.Deep CTR Prediction in Display Advertising[C]//Proceedings of the 24th ACM International Conference on Multimedia.New York:Association for Computing Machinery,2016:811-820.
[15]JUAN Y,ZHUANG Y,CHIN W S,et al.Field-Aware Factorization Machines for CTR Prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York:Association for Computing Machinery,2016:43-50.
[16]LIU Q,YU F,WU S,et al.A Convolutional Click Prediction Model[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.New York:Association for Computing Machinery,2015:1743-1746.
[17]MCMAHAN H B,HOLT G,SCULLEY D,et al.Ad Click Prediction:a View from the Trenches[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:Association for Computing Machinery,2013:1222-1230.
[18]ZHANG Y Y,DAI H J,XU C,et al.Sequential Click Prediction for Sponsored Search with Recurrent Neural Networks[EB/OL].(2014-07-28)[2020-01-05].https://arxiv.org/abs/1404.5772.
|