Co微米片,磁性材料,溶剂热法,微波吸收," /> Co微米片,磁性材料,溶剂热法,微波吸收,"/> Co microflakes,magnetic material,solvothermal method,microwave absorption,"/> <p class="MsoNormal"> <span>片状、球形及枝晶结构</span><span>Co</span><span>颗粒的可控制备与吸波机制研究</span>
Please wait a minute...
沈阳化工大学学报, 2023, 37(3): 249-259    doi: 10.3969/j.issn.2095-2198.2023.03.008
  材料科学与工程 本期目录 | 过刊浏览 | 高级检索 |

片状、球形及枝晶结构Co颗粒的可控制备与吸波机制研究

1.沈阳化工大学 化学工程学院, 辽宁 沈阳 110142;

2.沈阳化工大学 资源化工与材料教育部重点实验室, 辽宁 沈阳 110142

Controlled Synthesis and Microwave Absorption Mechanism of Co Flakes,Spheres and Dendritic Crystals Structure Materials

1.School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;

2.Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China

下载:  PDF (4649KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

铁磁金属颗粒可以实现电磁特性的有效调控,但颗粒局部团聚会诱发涡流效应,限制材料吸波性能的进一步提高.本文通过简单温和的溶剂热法分别制备了二维片状、三维球形以及枝晶形貌的Co颗粒.与球形及枝晶颗粒相比,Co微米片在C~Ku4~18 GHz)波段呈现出强、宽、薄的吸波特性.SEM表征结果显示制备的Co微米片直径为12~78 μm,厚度为0.1~0.5 μmVSM测量表明Co微米片具有优异的静态磁性能,饱和磁化强度高达148.6 A·m2/kg,矫顽力为0.96 A/m.电磁性能测试表明Co微米片具有强介电损耗和磁损耗能力,以其为填料时,最强反射损耗(RLmax)在5.0 GHz处高达62.77 dB,有效吸收带宽1.2 GHz,涂层厚度仅为2.37 mm.Co微米片吸收频带宽(完全覆盖CXKu波段),反射损耗强,匹配厚度薄,为合理设计薄、轻、宽、强的电磁波吸收剂提供了良好的模型材料.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  Co微米片')" href="#">

Co微米片  磁性材料  溶剂热法  微波吸收    

Abstract: 

Ferromagnetic metal/alloy particles can effectively regulate the electromagnetic properties,but the eddy current effect induced by the local agglomeration of particles limits the further improvement of the materials electromagnetic absorbing properties.In this work,Co microspheres,microflakes and dendritic crystals were fabricated by a simple solvothermal method.The Co microflakes exhibits strong,broad,and thin wave-absorbing properties from the CKu(4~18 GHz)bands.SEM characterization results show that the diameter of Co microflakes is 12~78 μm and the thickness of Co microflakes is 0.1~0.5 μm.VSM measurement shows that the Co microflakes have excellent static magnetic properties,with a saturation magnetization of 148.6 A·m2/kg and a coercivity of 0.96 A/m.Electromagnetic performance tests show that Co microflakes have strong dielectric loss and magnetic loss capabilities.When it is used as filler,the strongest reflection loss(RLmax)is as high as 62.77 dB at 5.0 GHz,the effective absorption bandwidth is 1.2 GHz,and the thickness is only 2.37 mm.Co microflakes have a wide absorption frequency(completely cover C,X and Ku bands),strong reflection loss and thin thickness,providing a good model material for rationally designing thin,light,wide and strong electromagnetic wave absorbers.

Key words:  Co microflakes')" href="#">

Co microflakes    magnetic material    solvothermal method    microwave absorption

               出版日期:  2023-06-30      发布日期:  2024-03-11      整期出版日期:  2023-06-30
ZTFLH: 

O614.81+2

 
基金资助: 

辽宁省兴辽英才青年拔尖项目(XLYC1907029);辽宁省教育厅项目(LQ2020002);辽宁省科技厅创新能力提升联合基金(2021-NLTS-12-01

通讯作者:  陈娜   
作者简介:  张栋(1998—),男,陕西西安人,硕士研究生在读,主要从事微纳米功能材料的基础研究.
引用本文:    
张栋1, 2, 王康军1, 2, 陈娜1, 2.

片状、球形及枝晶结构Co颗粒的可控制备与吸波机制研究 [J]. 沈阳化工大学学报, 2023, 37(3): 249-259.
ZHANG Dong1, 2, WANG Kangjun1, 2, CHEN Na1, 2.

Controlled Synthesis and Microwave Absorption Mechanism of Co Flakes,Spheres and Dendritic Crystals Structure Materials . Journal of Shenyang University of Chemical Technology, 2023, 37(3): 249-259.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2023.03.008  或          https://xuebao.syuct.edu.cn/CN/Y2023/V37/I3/249


1]ZHANG X,TIAN X L,LIU C,et al.MnCo-MOF-74 Derived Porous MnO/Co/C Heterogeneous Nanocomposites for High-Efficiency Electromagnetic Wave Absorption[J].Carbon,2022,194:257-266.

2]国家环境保护局.电磁辐射防护规定:GB 8702-1988 [S].北京:中国标准出版社,1989:1-3.

3]刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].第2 版.北京:化学工业出版社,2014:242-249.

4]ZENG M,CAO Q,LIU J,et al.Hierarchical Cobalt Selenides as Highly Efficient Microwave Absorbers with Tunable Frequency Response[J].ACS Applied Materials & Interfaces,2020,12(1):1222-1231.

5]LI X H,YOU W B,ZHANG R X,et al.Synthesis of Nonspherical Hollow Architecture with Magnetic Fe Core and Ni Decorated Tadpole-Like Shell as Ultrabroad Bandwidth Microwave Absorbers[J].Small,2021,17(46):e2103351.

6]CHENG Y,CAO J M,LV H L,et al.In SituRegulating Aspect Ratio of Bamboo-Like CNTs via CoxNi1-x-Catalyzed Growth to Pursue Superior Microwave Attenuation in X-Band[J].Inorganic Chemistry Frontiers,2019,6(1):309-316.

7]XU J J,LIU J W,CHE R C,et al.Polarization Enhancement of Microwave Absorption by Increasing Aspect Ratio of Ellipsoidal Nanorattles with Fe3O4 Cores and Hierarchical CuSiO3 Shells[J].Nanoscale,2014,6(11):5782-5790.

8]SHE W,BI H,WEN Z W,et al.Tunable Microwave Absorption Frequency by Aspect Ratio of Hollow Polydopamine@α-MnO2 Microspindles Studied by Electron Holography[J].ACS Applied Materials & Interfaces,2016,8(15):9782-9789.

9]WEN Z W,LIANG C Y,BI H,et al.Controllable Synthesis of Elongated Hexagonal Bipyramid Shaped La(OH)3 Nanorods and the Distribution of Electric Property by Off-Axis Electron Holography[J].Nano Research,2016,9(9):2561-2571.

10]YANG J,ZHANG J,LIANG C Y,et al.Ultrathin BaTiO3 Nanowires with High Aspect Ratio:A Simple One-Step Hydrothermal Synthesis and Their Strong Microwave Absorption[J].ACS Applied Materials & Interfaces,2013,5(15):7146-7151.

11]ZHANG F,JIA Z R,ZHOU J X,et al.Metal-Organic Framework-Derived Carbon Nanotubes for Broadband Electromagnetic Wave Absorption[J].Chemical Engineering Journal,2022,450(Part 2):138205.

12]HAN M G,TANG W,CHEN W B,et al.Effect of Shape of Fe Particles on Their Electromagnetic Properties within 1-18 GHz Range[J].Journal of Applied Physics,2010,107(9):09A958.

13]HAN R,QIAO L,WANG T,et al.Microwave Complex Permeability of Planar Anisotropy Carbonyl-Iron Particles[J].Journal of Alloys and Compounds,2011,509(6):2734-2737.

[14]ZOU Z,NING M Q,LEI Z K,et al.0D/1D/2D Architectural Co@C/MXene Composite for Boosting Microwave Attenuation Performance in 2-18 GHz[J].Carbon,2022,193):182-194.

[15]LIU X,WANG L S,MA Y T,et al.Facile Synthesis and Microwave Absorption Properties of Yolk-Shell ZnO-Ni-C/RGO Composite Materials[J].Chemical Engineering Journal,2018,333:92-100.

16]LI J,WU Q,WANG X Y,et al.Metal-Organic Framework-derived Co/CoO Nanoparticles with Tunable Particle Size for Strong Low-Frequency Microwave Absorption in the S and C Bands[J].Journal of Colloid and Interface Science,2022,628(Pt A):10-21.[17]WANG Y P,SUO B,SHI Y N,et al.General Fabrication of 3D Hierarchically Structured Bamboo-Like Nitrogen-Doped Carbon Nanotube Arrays on 1D Nitrogen-Doped Carbon Skeletons for Highly Efficient Electromagnetic Wave Energy Attenuation[J].ACS Applied Materials & Interfaces,2020,12(36):40692-40701.

18]LIANG J,CHEN J,SHEN H Q,et al.Hollow Porous Bowl-Like Nitrogen-Doped Cobalt/Carbon Nanocomposites with Enhanced Electromagnetic Wave Absorption[J].Chemistry of Materials,2021,33(5):1789-1798.

19]SHU R W,ZHANG G Y,WANG X,et al.Fabrication of 3D Net-Like MWCNTs/ZnFe2O4 Hybrid Composites as High-Performance Electromagnetic Wave Absorbers[J].Chemical Engineering Journal,2018,337):242-255.

20]WANG Z Z,BI H,WANG P H,et al.Magnetic and Microwave Absorption Properties of Self-Assemblies Composed of Core-Shell Cobalt-Cobalt Oxide Nanocrystals[J].Physical Chemistry Chemical Physics,2015,17(5):3796-3801.

21]MENG X,LEI W J,YANG W W,et al.Fe3O4 Nanoparticles Coated with Ultra-Thin Carbon Layer for Polarization-Controlled Microwave Absorption Performance[J].Journal of Colloid and Interface Science,2021(600):382-389.

22]YIN Y C,LIU X F,WEI X J,et al.Porous CNTs/Co Composite Derived From Zeolitic Imidazolate Framework:A Lightweight,Ultrathin,and Highly Efficient Electromagnetic Wave Absorber[J].ACS Applied Materials & Interfaces,2016,8(50):34686-34698.

23]ZHANG Q,XU D W,SI Y F,et al.Ti3C2TX MXene Nanosheets Decorated with Magnetic Co Nanoparticles and CoO Nanosheets for Microwave Absorption[J].ACS Applied Nano Materials,2022,5(5):7175-7186.

24]WANG K F,CHEN Y J,TIAN R,et al.Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance[J].ACS Applied Materials & Interfaces,2018,10(13):11333-11342.


No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed