多目标优化,投影面,进化算法,目标范围限定," /> 多目标优化,投影面,进化算法,目标范围限定,"/> multi-objective optimization,projection plane,evolutionary algorithm,objective scope limit,"/> <p class="MsoNormal"> 基于投影面的多目标优化问题目标分解进化算法
Please wait a minute...
沈阳化工大学学报, 2024, 38(2): 185-192    doi: 10.3969/j.issn.2095-2198.2024.02.015
  信息与计算机工程 本期目录 | 过刊浏览 | 高级检索 |

基于投影面的多目标优化问题目标分解进化算法

1.沈阳化工大学 计算机科学与技术学院, 辽宁 沈阳 1101422.辽宁省化工过程工业智能化技术重点实验室, 辽宁 沈阳 110142

Evolutionary Algorithm for Solving Multi-Objective Optimization Problem Based on Projection Plane with Objective Decomposition

1.Shenyang University of Chemical Technology, Shenyang 110142, China; 2. Key Laborotary of Industrial Intelligence Technology on Chemical Process, Shenyang 110142, China

下载:  PDF (1941KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对求解多目标优化问题存在解规模较大的问题,研究了如何得到决策条件下所需要的解,而不是多目标问题的全部解.现有多目标算法研究主要集中在解的分布性和收敛性上,很少考虑解数量方面的相关问题.根据决策需求并利用基于投影面的多目标优化算法对多目标优化问题的目标空间进行目标分解,设置不同目标函数构成投影面和自由维,建立满足用户决策条件的目标空间.在目标空间中对构成投影面的目标函数进行目标范围限定,利用空间距离获取投影面适应度,并在自由维上采用基于分解策略的多目标进化算法MOEA/D中的聚合函数作为适应度函数.通过相关的实验测试与分析,证明了基于投影面的多目标优化问题目标分解进化算法(MOEA/DP)能够有效解决确定目标域的多目标优化问题.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  多目标优化')" href="#">

多目标优化  投影面  进化算法  目标范围限定    

Abstract: 

In order to solve the question that the multi-objective optimization problem with many solutions,this paper studies how to obtain the required solutions under decision condition,rather than all the solutions of the multi-objective problem.At present,the existing multi-objective algorithms mainly focus on the distribution and convergence of the solutions,and rarely consider the number of solutions.According to decision condition,using the multi-objective optimization algorithm based on plane to decompose the objective function of the multi-objective optimization problem,and different objective functions are divide into the plane and free dimension,so the objective space under the users decision conditions is established.In the objective space,limit the objective range of the objective function that constitutes the projection plane in the objective space,use the spatial distance to obtain the fitness of the projection plane,and use the aggregation function in the MOEA/D algorithm based on the decomposition strategy as the fitness function on the free dimension.Through related experimental tests and analysis,it is proved that Evolutionary Algorithm for solving Multi-objective Optimization Problem Based on Projection Plane with objective decomposition can effectively solve the multi-objective optimization problem of determining the objective domain.

Key words:  multi-objective optimization')" href="#">

multi-objective optimization    projection plane    evolutionary algorithm    objective scope limit

               出版日期:  2024-04-30      发布日期:  2025-01-02      整期出版日期:  2024-04-30
通讯作者:  陈未如   
作者简介:  刘宝(1994—),男,山西太原人,硕士研究生在读,主要从事多目标优化问题和进化算法的研究.
引用本文:    
刘宝1, 2, 杨爽1, 2, 马畅畅1, 2, 鹿晓梦1, 2, 陈未如1, 2.

基于投影面的多目标优化问题目标分解进化算法 [J]. 沈阳化工大学学报, 2024, 38(2): 185-192.
LIU Bao1, 2, YANG Shuang1, 2, MA Changchang1, 2, LU Xiaomeng1, 2, CHEN Weiru1, 2.

Evolutionary Algorithm for Solving Multi-Objective Optimization Problem Based on Projection Plane with Objective Decomposition . Journal of Shenyang University of Chemical Technology, 2024, 38(2): 185-192.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2024.02.015  或          https://xuebao.syuct.edu.cn/CN/Y2024/V38/I2/185

1]FONSECA C M,FLEMING P J.An Overview of Evolutionary Algorithms in Multiobjective Optimization Evolutionary Computation[J].Evolutionary Computation,1995,3(1):1-16.

2]BACK T,FOGEL D B,MICHALEWICZ Z.Handbook of Evolutionary Computation[M].New York:Oxford University Press,1997:1-15.

3]胡佳鑫,杨乐平.交互式Pareto前沿可视化决策[J].国防科技大学学报,2019,41(5):128-133.

4]杨智民,王旭,庄显义.遗传算法在自动控制领域中的应用综述[J].信息与控制,2000(4):329-339.

5]谢佑波,李顺朝,王高山.遗传算法在移动网络规划中的应用[J].微计算机信息,2006,22(18):45-47,66.

6]黄文澜.基于多目标进化算法的投资组合优化研究[D].哈尔滨:哈尔滨商业大学,2020:18-42.

7]荆巍巍,章磊,田俊.基于自适应NSGA-Ⅱ算法的柔性车间多目标生产调度[J].组合机床与自动化加工技术,2020(8):151-155,160.

8]赵辉,王天龙,刘衍舟,等.基于分解和支配关系的超多目标进化算法[J].电子与信息学报,2020,42(8):1975-1981.

9]LI M Q,YANG S X,LIU X H.Shift-Based Density Estimation for Pareto-Based Algorithms in Many-Objective Optimization[J].IEEE Transactions on Evolutionary Computation,2014,18(3):348-365.

10]ZHANG Q F,LI H.MOEA/D:a Multiobjective Evolutionary Algorithm Based on Decomposition[J].IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.

11]SCHAFFER J D.Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[C]// Proceedings of the 1st International Conference on Genetic Algorithms,Hillsdale:Lawrence Erlbaum Associates Inc.1985:93-100

12]DAS I,DENNIS J E.Normal-Boundary Intersection:a New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems[J].SIAM journal on Optimization,1998,8(3):631-657.

13]余元辉.基于均方差值调节的多目标权重系数GA算法[J].沈阳化工学院学报,2008,22(4):355-359.

14]ZITZLER E,DEB K,THIELE L.Comparison of Multiobjective Evolutionary Algorithms:Empirical Results[J].Evolutionary Computation,2000,8(2):173-195.

15]DEB K,THIELE L,LAUMANNS M,et al.Scalable Multi-Objective Optimization Test Problems[C]//Proceedings of the 2002 Congress on Evolutionary Computation.Los Alamitos:IEEE Computer Society,2002,825-830.

16BOSMAN P A N,THIERENS D.The Balance Between Proximity and Diversity in Multiobjective Evolutionary AlgorithmsJ.IEEE Transactions on Evolutionary Computation,2003,7(2):174-188.

[1] 杨爽, 陈未如.

基于投影面的多目标优化问题进化算法MOEA/P [J]. 沈阳化工大学学报, 2022, 36(5): 468-475.

No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed