基于YOLOV3改进的算法在对地目标检测中的应用
沈阳化工大学学报 ›› 2024, Vol. 38 ›› Issue (2): 167-172.doi: 10.3969/j.issn.2095-2198.2024.02.012
基于YOLOV3改进的算法在对地目标检测中的应用
1.沈阳化工大学 信息工程学院, 辽宁 沈阳 110142;2.中国科学院 沈阳自动化研究所光电信息技术研究室, 辽宁 沈阳 110169
Application of Improved YOLOV3 Algorithm in Ground Object Detection
1. Shenyang University of Chemical Technology, Shenyang 110142, China; 2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China
摘要:
对地目标检测因其视野旷阔,在交通安全、无人机侦察等领域应用广泛.对地目标具有数量多、尺度小的特点,导致检测精度不高、召回率低.针对上述问题,提出了一种基于YOLOV3改进的对地目标检测算法.首先,对数据集进行维度聚类,设计新的锚框尺寸,将先验数据融入模型,增强检测模型的有效性;其次,改进原有的网络模型,优化YOLOV3的目标预测框损失函数,使用CIoU损失代替原有的和方差损失,提高了目标预测框的回归稳定性.实验结果表明:改进的算法在VisDrone2018数据集上相对YOLOV3算法的召回率提高了11.2%,平均准确率均值提高了3.36%,改进的算法对对地目标检测的结果优于原本的YOLOV3算法.
[1]LOWE D G.Object.Recognition from Local Scale-Invariant Features[C]// /Proceedings of the Seventh IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society,1999:1150-1157. [2]徐渊,许晓亮,李才年,等.结合SVM分类器与HOG特征提取的行人检测[J].计算机工程,2016,42(1):56-60,65. [3]金志浩,迟展,于宝刚.基于声发射技术的减速顶故障诊断[J].沈阳化工大学学报,2020,34(2):147-152. [4]张荣,李伟平,莫同.深度学习研究综述[J].信息与控制,2018,47(4):385-397,410 [5]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2014:580-587. [6]GIRSHICK R.Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision(ICCV).Los Alamitos:IEEE Computer Society,2015:1440-1448. [7]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [8]HE K M,GKIOXARI G,DOLLR P,et al.Mask R-CNN[C]/2017 IEEE International Conference on Computer Vision(ICCV).Los Alamitos:IEEE Computer Society,2017:2980-2988. [9]DAI J,LI Y,HE K M,et al.R-FCN:Object Detection Via Region-Based Fully Convolutional Networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems.New York:Curran Associates Inc,2016:379-387. [10]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot Multibox Detector[C]//Computer Vision–ECCV 2016.Cham:Springer,2016:21-37. [11]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-Time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2016:779-788. [12]REDMON J,FARHADI A.YOLOV3:an Incremental Improvement[EB/OL].(2018-04-08).https://arxiv.org/abs/1804.02767. [13]REDMON J,FARHADI A.YOLOV3:an Incremental Improvement[EB/OL].(2018-04-08).https://arxiv.org/abs/1804.02767. [13]He K M,Zhang X Y,Ren S Q,et al.Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2016:770-778. [14]LIN T Y,DOLL?R P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2017:936-944. [15]JAIN A K.Data Clustering:50 Years Beyond K-Means[J].Pattern Recognition Letters,2010,31(8):651-666. [16]ARTHUR,D,VASSILVITSKII,S.K-Means++:the Advantages of CarefullSeeding[C].Proceedings of the eighteenth annual ACM-SIAM symposiumon Discrete algorithms,Philadelphia:Society for Industrial and Applied Mathematics,2007:1027-1035. [17]JIANG B R,LUO R X,MAO J Y,et al.Acquisition of Localization Confidence for Accurate Object Detection[C]//Computer Vision – ECCV 2018,Cham:Springer,2018:816-832. [18]杨树国,和文静,刘银玲等..基于形态学的高斯模型和八邻域帧差法混合运动目标检测算法[J].计算机与现代化,2019(7):32-36,42. [19]YU X H,CHEN G A,CHENG S X.Dynamic Learning Rate Optimization of the Backpropagation Algorithm[J].IEEE Transactions on Neural Networks,1995,6(3):669-677. |
No related articles found! |
|