图像合成,级联细化网络,空间自适应归一化,平滑L1损失," /> 图像合成,级联细化网络,空间自适应归一化,平滑L1损失,"/> image synthesis,cascaded refinement networks,spatially-adaptive(de) normalization,smooth ,L1 loss,"/>
基于改进级联细化网络的语义图像合成
沈阳化工大学学报 ›› 2024, Vol. 38 ›› Issue (2): 155-160.doi: 10.3969/j.issn.2095-2198.2024.02.010
基于改进级联细化网络的语义图像合成
1.沈阳化工大学 信息工程学院, 辽宁 沈阳 110142;2.中国科学院 沈阳自动化研究所, 辽宁 沈阳 110016
Semantic Image Synthesis Based on Improved Cascaded Refinement Network
1. Shenyang University of Chemical Technology, Shenyang 110142, China; 2. Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang 110142, China
摘要:
针对级联细化网络(cascaded refinement networks,CRNs)存在合成图像不完整、语义信息丢失、合成的图像颜色差异大的问题,提出一种改进级联细化网络的语义图像合成方法.在级联细化网络中用空间自适应归一化[spatially-adaptive(de)normalization,SPADE]代替层归一化,通过空间自适应的学习调节归一化层中的激活,从而使语义信息更加完整;引入平滑L1损失函数,减少输出图像和对比图像间的颜色差异;引入可学习的空间自适应归一化,增加网络参数的存储容量,能够学习更多的语义信息,使合成的图像质量得到提升.在Cityscapes数据集和GTA5数据集上的试验结果表明:该方法的平均交并比和像素准确性分别比CRNs的提升了31.4%和7.4%,弗雷歇初始距离比CRNs的降低了16.3%.
[1]孟智慧.城市公共自行车站点短时出租量预测方法研究[D].沈阳:沈阳化工大学,2018:35-47. [2]CHEN T,CHENG M M,TAN P,et al.Sketch2photo:Internet Image Montage[J]ACM Transactions on Graphics,2009,28(5):124. [3]WANG K F,GOU C,DUAN Y J,et al.Generative Adversarial Networks:Introduction and Outlook[J].IEEE/CAA Journal of Automatica Sinica,2017,4(4):588-598. [4]KINGMA D P,WELLING M.Auto-Encoding Variational Bayes[EB/OL].(2013-12-20).https://arxiv.org/abs/1312.6114. [5]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative Adversarial Nets[C]//Proceeding of the 27th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2014:2672-2680. [6]DENTON E,CHINTALA S,SZLAM A,et al.Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2015:1486-1494. [7]蔡雨婷,陈昭炯,叶东毅.基于双层级联GAN的草图到真实感图像的异质转换[J].模式识别与人工智能,2018,31(10):877-886. [8]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015.Cham:Springer,2015:234-241. [9]XIN D,BISWAL B B.Psychophysiological Interactions in a Visual Checkerboard Task:Reproducibility,Reliability,and the Effects of Deconvolution[J].Frontiers in Neuroence,2017,11:573. [10]CHEN Q F,KOLTUN V.Photographic Image Synthesis with Cascaded Refinement Networks[C]//Proceedings of the IEEE New York:2017 IEEE International Conference on Computer Vision(ICCV).Los Alamitos:IEEE Computer Society,2017:1520-1529. [11]WANG X T,YU K,DONG C,et al.Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2018:606-615. [12]PARK T,LIU M Y,WANG T C,et al.Semantic Image Synthesis with Spatially-Adaptive Normalization[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2019:2332-2341. [13]DOSOVITSKIY A,BROX T.Generating Images with Perceptual Similarity Metrics Based on Deep Networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Red Hook:Curran Associates Inc.,2016:658-666. [14]NGUYEN A,CLUNE J,BENGIO Y,et al.Plug & Play Generative Networks:Conditional Iterative Generation of Images in Latent Space[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2017:3510-3520. [15]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//2016 IEEE Conferenceon Computer Visionand Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2016:770-778. [16]CORDTS M,OMRAN M,RAMOS S,et al.The Cityscapes Dataset for Semantic Urban Scene Understanding[C]//2016 IEEE Conferenceon Computer Visionand Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2016:3213-3223. [17]RICHTER S R,VINEET V,ROTH S,et al.laying for Data:Ground Truth from Computer Games[C]//Computer Vision-ECCV 2016.Cham:Springer,2016:102-118. [18]ISOLA P,ZHU J Y,ZHOU T H,et al.Image-to-Image Translation with Conditional Adversarial Networks[C]//2017 IEEE Conferenceon Computer Visionand Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2017:5967-5976. [19]ZHAO H S,SHI J P,QI X J,et al.Pyramid Scene Parsing Network[C]//2017 IEEE Conference on Computer Visionand Pattern Recognition(CVPR).Los Alamitos:IEEE Computer Society,2017:6230-6239. |
No related articles found! |
|