核壳结构纳米线,微磁学模拟,动力学行为,共振频率," /> 核壳结构纳米线,微磁学模拟,动力学行为,共振频率,"/> core-shell ,nanowiresmicromagnetic simulationdynamic behaviorresonancefrequency,"/> <p class="MsoNormal"> 反铁磁交换作用对纳米线动力学行为的影响
Please wait a minute...
沈阳化工大学学报, 2023, 37(3): 283-287    doi: 10.3969/j.issn.2095-2198.2023.03.012
  数理科学 本期目录 | 过刊浏览 | 高级检索 |

反铁磁交换作用对纳米线动力学行为的影响

1.沈阳化工大学 理学院, 辽宁 沈阳 1101422.东北大学 理学院, 辽宁 沈阳 110819

Effect of Antiferromagnetic Exchange Interaction on the Dynamic Behavior of Nanowires Magnetic Nanowires

1.Shenyang University of Chemical Technology, Shenyang 110142, China;2.Northeastern University, Shenyang 110819, China

下载:  PDF (1045KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

当核壳结构磁性纳米线用作高密度磁存储单元时,系统的共振频率会限制其磁存储速率的上限值.为了探究反铁磁界面交换作用对核壳结构磁性纳米线磁共振行为的影响,通过微磁学模拟方法对系统的动力学行为进行研究.研究了具有反铁磁界面交换作用的系统和纯铁磁系统.首先,讨论界面交换作用对系统磁共振行为的影响,发现具有反铁磁界面交换作用的系统的磁共振频率会略高于铁磁系统.然后,讨论外加直流场对系统共振频率和共振线宽的影响,发现具有反铁磁界面交换作用的系统的共振线宽和外加直流场的强度呈非线性关系.最后,讨论温度对系统磁共振行为的影响,发现纯铁磁系统的热稳定性要强于具有反铁磁界面交换作用的系统.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  核壳结构纳米线')" href="#">

核壳结构纳米线  微磁学模拟  动力学行为  共振频率    

Abstract: 

When core-shell magnetic nanowires are used as high-density magnetic storage units,the upper limit of magnetic storage rate is limited by the resonant frequency of the system.In order to investigate the effect of antiferromagnetic interfacial exchange interaction on the resonance behavior of core-shell magnetic nanowires,the dynamic behavior of the system was studied by means of micromagnetic simulation.In this study,two systems were considered,namely the system with ferromagnetic interfacial exchange interaction and the system with antiferromagnetic interfacial exchange interaction.Firstly,the effect of interfacial exchange interactionon the magnetic resonance behavior of the system was discussed.It was found that the magnetic resonance frequency of the system with antiferromagnetic interfacial exchange interactionwas slightly higher than that of the ferromagnetic system.Then the influence of the external DC magneticfield on the resonance frequency and resonance linewidth of the system was discussed.It was found that the resonance linewidth of the system with antiferromagnetic interfacialexchangeinteractionwas nonlinear to the intensity of the external DC magneticfield.Finally,the influence of temperature on the magnetic resonance behavior of the systems was discussed.It was found that the thermal stability of ferromagnetic system was stronger than that of the system with antiferromagnetic interfacial exchange interaction.

Key words:  core-shell ')" href="#">

core-shell     nanowiresmicromagnetic simulationdynamic behaviorresonancefrequency

               出版日期:  2023-06-30      发布日期:  2024-03-11      整期出版日期:  2023-06-30
ZTFLH: 

O482.53+4

 
基金资助: 

辽宁省教育厅青年育苗项目(LQ2020014)

作者简介:  鲜于正楠(1990—),男(朝鲜族),辽宁沈阳人,讲师,博士,主要从事磁性材料的理论研究.
引用本文:    
鲜于正楠1, 杜安2.

反铁磁交换作用对纳米线动力学行为的影响 [J]. 沈阳化工大学学报, 2023, 37(3): 283-287.
XIANYU Zhengnan1, DU An2.

Effect of Antiferromagnetic Exchange Interaction on the Dynamic Behavior of Nanowires Magnetic Nanowires . Journal of Shenyang University of Chemical Technology, 2023, 37(3): 283-287.

链接本文:  
https://xuebao.syuct.edu.cn/CN/10.3969/j.issn.2095-2198.2023.03.012  或          https://xuebao.syuct.edu.cn/CN/Y2023/V37/I3/283

1]ZHU H,POOKPANRATANA S J,BONEVICH J E,et al.Redox-Active Molecular Nanowire Flash Memory for High-Endurance and High-Density Nonvolatile Memory Applications[J].ACS Applied Materials & Interfaces,2015,7(49):27306-27313.

2]LIU Z,YANG B,CAO W W,et al.Enhanced Energy Storage with Polar Vortices in Ferroelectric Nanocomposites[J].Physical Review Applied,2017,8(3):034014.

3]SHARMA M,KUANR B K.Microwave Devices Based on Template-Assisted NiFe Nanowires:Fabrication and Characterization[J].Journal of Physics D:Applied Physics,2020,53(6):065001.

4]XU C L,LI H,ZHAO G Y,et al.Electrodeposition of Ferromagnetic Nanowire Arrays on AAO/Ti/Si Substrate for Ultrahigh-Density Magnetic Storage Devices[J].Materials Letters,2006,60(19):2335-2338.

5]ELMEKAWY A H A,IASHINA E G,DUBITSKIY I S,et al.Magnetic Properties and FORC Analysis of Iron Nanowire Arrays[J].Materials Today Communications,2020,25:101609. 

[6]PARKIN S S P,HAYASHI M,THOMAS L.Magnetic Domain-Wall Racetrack Memory[J].Science,2008,320(5873):190-194.

7]GERRITS T,VAN DEN BERG H A M,HOHLFELD J,et al.Ultrafast Precessional Magnetization Reversal by Picosecond Magnetic Field Pulse Shaping[J].Nature,2002,418(6897):509-512.

8]TSE D H Y,STEINMULLER S J,TRYPINIOTIS T,et al.Static and Dynamic Magnetic Properties of  Ni80Fe20  Square Antidot Arrays[J].Physical Review B,2009,79(5):054426.

9]WELLER D,MOSER A.Thermal Effect Limits in Ultrahigh-Density Magnetic Recording[J].IEEE Transactions on Magnetics,1999,35(6):4423-4439.

10]XIANYU Z N,DU A.Low-Temperature Properties of a Magnetic Nanowire[J].Physica Status Solidi B-Basic Research,2017,254(6):1600601.

11]XIANYU Z N,DU A.Magnetic Properties of XXZ Heisenberg Antiferromagnetic and Ferromagnetic Core-Shell Nanowires[J].Journal of Applied Physics,2018,124(18):184304.

12]PICCO M,RITORT F.Dynamical ac Study of the Critical Behavior in Heisenberg Spin Glasses[J].Physical Review B,2005,71(10):100406.

13LIU R L,WANG J B,LIU Q F,et al.Micromagnetic Simulation of the Magnetic Spectrum of Ferromagnetic NanowireJ.Journal of Applied Physics,2008,103(1):013910.

No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed